Каналы связи: виды, характеристики

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи (line) являет­ся термин канал связи (channel).

Физическая среда передачи данных может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через кото­рые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на следую­щие:

§ проводные (воздушные);

§ кабельные (медные и волоконно-оптические);

§ радиоканалы наземной и спутниковой связи.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и вися­щие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии исполь­зуются и для передачи компьютерных данных. Скоростные качества и помехоза­щищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак­сиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой. Витая пара существует в экранированном варианте, когда пара мед­ных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю.

Коаксиальный кабель имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельно­го телевидения и т. п.

Волоконно-оптический кабель состоит из тонких волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радио­каналов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция, а также диапазонах сверхвысо­ких частот (СВЧ или microwaves).

В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты использу­ют либо спутниковые каналы, либо радиорелейные каналы, где это условие выпол­няется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются воло­конно-оптические. На них сегодня строятся как магистрали крупных территори­альных сетей, так и высокоскоростные линии связи локальных сетей.

Популярной средой является также витая пара, которая характеризуется отличным соотноше­нием качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользова­телем сети.

Даже при рассмотрении простейшей сети, состоящей всего из двух машин, можно увидеть многие проблемы, присущие любой вычислительной сети, в том числе проблемы, связанные с физической передачей сигналов по линиям связи , без решения которой невозможен любой вид связи.

В вычислительной технике для представления данных используется двоичный код . Внутри компьютера единицам и нулям данных соответствуют дискретные электрические сигналы. Представление данных в виде электрических или оптических сигналов называется кодированием. Существуют различные способы кодирования двоичных цифр 1 и 0, например, потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю - другой, или импульсный способ, когда для представления цифр используются импульсы различной или одной полярности.

Аналогичные подходы могут быть использованы для кодирования данных и при передаче их между двумя компьютерами по линиям связи. Однако эти линии связи отличаются по своим электрическим характеристикам от тех, которые существуют внутри компьютера. Главное отличие внешних линий связи от внутренних состоит в их гораздо большей протяженности , а также в том, что они проходят вне экранированного корпуса по пространствам, зачастую подверженным воздействию сильных электромагнитных помех. Все это приводит к значительно большим искажениям прямоугольных импульсов (например, «заваливанию» фронтов), чем внутри компьютера. Поэтому для надежного распознавания импульсов на приемном конце линии связи при передаче данных внутри и вне компьютера не всегда можно использовать одни и те же скорости и способы кодирования. Например, медленное нарастание фронта импульса из-за высокой емкостной нагрузки линии требует передачи импульсов с меньшей скоростью (чтобы передний и задний фронты соседних импульсов не перекрывались и импульс успел дорасти до требуемого уровня).

В вычислительных сетях применяют как потенциальное, так и импульсное кодирование дискретных данных , а также специфический способ представления данных, который никогда не используется внутри компьютера, - модуляцию (рис. 3). При модуляции дискретная информация представляется синусоидальным сигналом той частоты, которую хорошо передает имеющаяся линия связи.

Потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов.

Для преобразования данных из одного вида в другой используются модемы. Термин «модем» - сокращение от слов модулятор/демодулятор. Двоичный ноль преобразуется, например, им в сигнал низкой, а единица - высокой частоты. Другими словами, преобразуя данные, модем модулирует частоту аналогового сигнала (рис. 4).


На способ передачи сигналом влияет и количество проводов в линиях связи между компьютерами.

Передача данных может происходить происходит параллельно (рис. 5) или последовательно (рис. 6).

Для сокращения стоимости линий связи в сетях обычно стремятся к сокращению количества проводов и из-за этого используют не параллельную передачу всех бит одного байта или даже нескольких байт, как это делается внутри компьютера, а последовательную, побитную передачу, требующую всего одной пары проводов.


При соединении компьютеров и устройств используются также три различных метода, обозначаемые тремя различными терминами. Соединение бывает: симплексное, полудуп­лексное и дуплексное (рис. 7).

О симплексном соединении говорят, когда данные перемещаются лишь в одном направлении. Полудуплексное соединение позво­ляет данным перемещаться в обоих направлениях, но в разное время, и, наконец, дуплексное соединение, это когда данные следуют в обоих направлениях одновременно.


Рис. 7. Примеры потоков данных.

Другим важным понятием является переключение (коммутация) соединения.

Любые сети связи поддерживают некоторый способ коммутации своих абонентов между собой. Этими абонентами могут быть удаленные компьютеры, локальные сети, факс-аппараты или просто собеседники, общающиеся с помощью телефон­ных аппаратов. Практически невозможно предоставить каждой паре взаимодействующих абонентов свою собственную некоммутируемую (т.е. постоянное соединение) физическую линию связи, которой они могли бы монопольно «владеть» в течение длительного времени. По­этому в любой сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает доступность имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети.

Переключение соединения позволяет аппаратным средствам сети разделять один и тот же физический канал связи между многими устройствами. Два основных способа переключения соединения - пере­ключение цепей и переключение пакетов.

Переключение цепей создает единое непрерывное соединение между двумя сетевыми устройствами. Пока эти устройства взаимодействуют, ни одно другое не сможет воспользоваться этим соединением для передачи собственной инфор­мации - оно вынуждено ждать, пока соединение не освободится.

Простой пример переключателя цепей - переключатель типа А-В, служащий, чтобы два компьютера соединить с одним принтером. Чтобы один из компьюте­ров мог печатать, вы поворачиваете тумблер на переключателе, устанавливая непрерывное соединение между компьютером и принтером. Образуется соеди­нение типа «точка-точка». Как изображено на рисунке, только один компьютер может печатать в одно и то же время.



Рис. 6Переключение цепей

Большинство современных сетей, включая Интернет, используют переключение пакетов. Программы передачи данных в таких сетях делят данные на кусочки, называе­мые пакетами. В сети пакетной коммутации данные могут следовать одновременно одним пакетом, а могут - в нескольких. Данные прибудут в одно и тоже место назначения, несмотря на то, что пути, которыми они следовали, могут быть совершенно различны.

Для сравнения двух видов соединения в сети, предположим, что мы прервали канал в каждом их них. Например, отключив принтер от менеджера на рис. 6 (переставив тумблер в положение В), вы лишили его возможности печатать. Соединение с переключением цепей требует наличия непрерывного канала связи.



Рис. 7. Переключение пакетов

Наоборот, данные в сети с переключением пакетов могут двигаться различными путями. Это видно на рис. 7. Данные необязательно следуют одной дорогой на пути между офисным и домашним компьютерами, разрыв одного из каналов не приведет к потере соединения - данные просто пойдут другим маршрутом. Сети с переключением пакетов имеют множество альтернативных маршрутов для пакетов.

Коммутация пакетов - это техника коммутации абонентов, которая была специ­ально разработана для эффективной передачи компьютерного трафика.

Суть проблемы заключается в пульсирующем ха­рактере трафика , который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просмат­ривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вооб­ще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отно­шению средней интенсивности обмена данными к максимально возможной, может составлять 1:50 или 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут использоваться и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сети сообщения раз­биваются в исходном узле на сравнительно небольшие части, называемые пакета­ми. Сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п.

Сообщения могут иметь произвольную длину, от нескольких байт до многих мега­байт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

Пакеты транспортируются в сети как независи­мые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это дается в сетях с коммутацией каналов. При этом способе время взаимодействия пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов. Тем не менее, общий объем передаваемых сетью компьютерных данных в едини­цу времени при технике коммутации пакетов будет выше, чем при технике ком­мутации каналов.

Обычно при равенстве предоставляемой скоро­сти доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

Каждая из этих схем (коммутация каналов (circuit switching) или коммутация пакетов (packet switching)) имеет свои преимущества и недостатки, но по долгосроч­ным прогнозам многих специалистов будущее принадлежит технологии коммута­ции пакетов, как более гибкой и универсальной.

Сети с коммутацией каналов хорошо приспособлены для коммутации данных с постоянной скоростью, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами.

Как сети с коммутацией пакетов, так и сети с коммутацией каналов можно разделить на два класса по другому признаку - на сети с динамической коммутацией и сети с постоянной коммутацией.

В первом случае сеть разрешает устанавливать соединение по инициативе пользователя сети. Коммутация выполняется на время сеанса связи, а затем (опять же по инициативе одного из взаимодействующих пользователей) связь разрывается. В общем случае любой пользователь сети может соединиться с любым другим пользователем сети. Обычно период соединения между парой пользователей при динамической коммутации составляет от нескольких секунд до нескольких часов и завершается при выполнении определенной работы - передачи файла, просмотра страницы текста или изображения и т. п.

Во втором случае сеть не предоставляет пользователю возможность выполнить динамическую коммутацию с другим произвольным пользователем сети. Вместо этого сеть разрешает паре пользователей заказать соединение на длительный период[ времени. Соединение устанавливается не пользователями, а персоналом, обслуживающим сеть. Время, на которое устанавливается постоянная коммутация, меряется обычно несколькими месяцами. Режим постоянной коммутации в сетях с коммутацией каналов часто называется сервисом выделенных (dedicated) или арендуемых (leased) каналов.

Примерами сетей, поддерживающих режим динамической коммутации, являются телефонные сети общего пользования, локальные сети, сеть Internet.

Некоторые типы сетей поддерживают оба режима работы.

Еще одной проблемой, которую нужно решать при передаче сигналов, является проблема взаимной синхронизации передатчика одного компьютера с приемником другого . При организации взаимодействия модулей внутри компьютера эта проблема решается очень просто, так как в этом случае все модули синхронизируются от общего тактового генератора. Проблема синхронизации при связи компьютеров может решаться разными способами, как с помощью обмена специальными тактовыми синхроимпульсами по отдельной линии, так и с помощью периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающейся от формы импульсов данных.

Асинхронная и синхронная передачи. При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхрони­зацию между приемником и передатчиком.

Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синх­ронизации на уровне байт.

Такой режим работы называется асинхронным или старт-стопным. Другой причиной использования такого режима работы является наличие устройств, ко­торые генерируют байты данных в случайные моменты времени. Так работает кла­виатура дисплея или другого терминального устройства, с которого человек вводит данные для обработки их компьютером.

В асинхронном режиме каждый байт данных сопровождается специальными сиг­налами «старт» и «стоп». Назначение этих сигналов состоит в том, чтобы, во-первых, известить приемник о приходе данных и, во-вторых, чтобы дать приемнику достаточно времени для выполнения некоторых функций, связанных с синхронизацией, до поступления следующего байта..

Асинхронным описанный режим называется потому, что каждый байт может быть несколько смещен во времени относительно побитовых тактов предыдущего байта

Задачи надежного обмена двоичными сигналами, представленными соответствующими электромагнитными сигналами, в вычислительных сетях решает определенный класс оборудования. В локальных сетях это сетевые адаптеры, а в глобальных сетях - аппаратура передачи данных, к которой относятся, например, рассмотренные модемы. Это оборудование кодирует и декодирует каждый информационный бит, синхронизирует передачу электромагнитных сигналов по линиям связи, проверяет правильность передачи по контрольной сумме и может выполнять некоторые другие операции.

Контрольные вопросы:

3. Какие линии связи используются в компьютерных сетях?

4. Какие линии связи являются наиболее перспективными?

5. Как передаются двоичные сигналы в сети? Что такое модуляция?

6. Для чего используется модем?

7. Что такое последовательная и параллельная передача данных?

8. Что такое симплексное, полудуп­лексное и дуплексное соединение?

9. Что такое коммутация соединения?

10. Какие существуют два основных способа коммутации соединения?

11. Что такое пакетная коммутация и в чем ее преимущество?

12. Когда целесообразно использовать коммутацию каналов?

13. Поясните понятия асинхронной и синхронной передачи данных?

Общие определения

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель ««витая пара», коаксиальный кабель, волоконно-оптический кабель и окружающее пространство.

Линии связи , или линии передачи данных – это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи – это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи .

Канал передачи данных – это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных линии связи можно разделить следующим образом:

· проводные линии связи без изолирующих и экранирующих оплеток;

· кабельные, где для передачи сигналов используются такие линии связи, как кабели «витая пара», коаксиальные кабели или оптоволоконные кабели;

· беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналов, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям «простой старой телефонной линии» (POST – Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся плохая помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные линии связи

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей:

1) витая пара;

2) коаксиальный кабель;

3) оптоволоконный кабель.

Витая пара (twisted pair ) – кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку (рис. 8.2, а). Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара (UTP) и экранированная витая пара (STP).

Характерным для этого кабеля является простота монтажа. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа «звезда». Кабель подключается к сетевым устройствам при помощи соединителя RJ45.

Рис. 8.2. Кабельные линии связи: а – витая пара; б – коаксиальный кабель;

в – оптоволоконный кабель

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с.


Витая пара обычно используется для связи на расстояние не более нескольких сот метров. К недостаткам кабеля «витая пара» можно отнести возможность простого несанкционированного подключения к сети.

Коаксиальный кабель (coaxial cable ) – это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (он состоит из медной оплетки или слоя алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией (рис. 8.2, б).

Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5–6 мм и толстый коаксиальный кабель диаметром 10–12 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой.

Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа «общая шина». Коаксиальный кабель более помехозащищенный, чем витая пара и снижает собственное излучение. Пропускная способность – 50–100 Мбит/с. Допустимая длина линии связи – несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре.

Оптоволоконный кабель (fiber optic ) – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон (рис. 8.2, в). На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование.

Основное преимущество кабеля этого типа – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3 Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

Беспроводные каналы передачи данных (радиоканалы наземной и спутниковой связи)

Радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи образуются с помощью передатчика и приемника радиоволн и относятся к технологии беспроводной передачи данных.

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями – до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

В спутниковых системах используются антенны СВЧ-диапазона частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков мегабит в секунду.

Существуют выделенные и коммутируемые каналы.

Если между двумя абонентами установлена постоянная связь, то канал называют выделенным, или постоянным. Такой канал может быть собственным или абонируемым.

Если соединение между абонентами устанавливают каждый раз при передаче данных, то такой канал называют коммутируемым. Для таких каналов существуют три этапа передачи данных:

    Установка соединения;

    Собственно передачи данных;

    Разрыв соединения после окончания передачи данных.

К достоинствам выделенного канала относятся высокая скорость передачи данных, высокое качество сигналов, отсутствие блокировок, малое время, требуемое для установки соединения между абонентами сети. К недостаткам же такого канала относят высокую стоимость передачи информации и отсутствие гибкости.

Коммутируемый канал также имеет ряд достоинств, среди них: гибкость и невысокая стоимость передачи данных. А недостатки таких каналов в том, что возможны блокировки, качество передачи невысокое, а стоимость передачи информации в случае ее большого объема, напротив, высока.

Каналы передачи данных классифицируются по направлению передачи информации на следующие виды:

Симплексные каналы – это каналы, у которых передача данных осуществляется в одном направлении (примеры: радио- и телеканалы);

Полудуплексные каналы – это каналы, у которых передача информации осуществляется в двух направлениях, но по очереди (пример: передача по шине в компьютерной сети);

Дуплексные каналы – это каналы, передача по которым осуществляется в двух направлениях одновременно. Это достигается либо использованием проводной связи (телефон), либо использованием различных частот.

По виду передаваемых сигналов каналы делятся на аналоговые и цифровые. По аналоговым каналам связи данные передаются в виде синусоидальных гармонических колебаний. Передача информации по таким каналам осуществляется за счет методов модуляции. Кодирование данных при аналоговой передаче проводят, используя следующие виды модуляции: амплитудную, частотную, фазовую. Современные протоколы передачи данных по аналоговым каналам используют также совмещенные виды модуляции.

Цифровые каналы передачи информации осуществляют в импульсном виде. При таком способе нет необходимости в преобразовании сигналов в аналоговые и обратно. При цифровой передаче данных используют разные способы кодирования. Методы кодирования должны отвечать следующим требованиям: простота, самосинхронизация, использование одного уровня напряжения, максимальное использование полосы пропускания данных.

Модель взаимодействия открытых систем

В рамках международной организации по синхронизации была разработана модель взаимодействия открытых систем – OpenSystemofInterconnection(OSI). Эта модель представляет собой рекомендации по структурной организации сетевых подсистем. Эти рекомендации обеспечивают взаимодействие систем с разной архитектурой и разным программным сопровождением.

Эту модель часто называют семиуровневой моделью, так как она обеспечивает 7 основных уровней взаимодействия. Самый нижний уровень взаимодействия – физический. Он определяет взаимодействие с физической средой, задает механические, электрические и функциональные стандарты взаимодействия. На физическом уровне осуществляется установление соединения между абонентами, его поддержание и разрыв.

Второй уровень – канальный. Этот уровень, непосредственно взаимодействующий с физическим, отвечает за передачу отдельных кадров или фреймов в рамках одного звена данных. Канальный уровень добавляет к пакету, пришедшему от сетевого уровня преамбулу, а именно физические адреса источника и приемника информации. На этом уровне осуществляется проверка контрольного кода. Канальный уровень также отвечает за разделение среды передачи данных, то есть он определяет дисциплину захвата физического канала.

Третий уровень – сетевой. Он отвечает за пересылку пакетов информации между сетями. Сетевой уровень организуется путем создания логического канала для передачи пакетов от сети-источника в сеть-приемник. Основная функция этого уровня – маршрутизация пакетов, то есть выбор оптимального маршрута передачи информации. Существуют разные алгоритмы маршрутизации, которые учитывают загруженность каналов, их пропускную способность и другие факторы.

Четвертый уровень – транспортный. Он организует доставку сообщения от источника к приемнику. В сетях с пакетной коммутацией на этом уровне обеспечивается разбиение сообщения на пакеты и сборка пакетов в узле-приемнике.

Пятый уровень – сеансовый. Он управляет сеансом связи: обеспечивает установление, поддержание и разрыв при завершении связи. Сеанс может быть односторонним (симплексным), полудуплексным и дуплексным в соответствии с тем какой тип каналов используется для связи. В ходе сеанса связи фиксируются контрольные точки. При аварийном разрыве связи именно этот уровень обеспечивает ее восстановление и продолжение от ближайшей контрольной точки. На этом уровне также решаются вопросы контроля доступа, оплаты ресурсов за сервер и другие.

Шестой уровень – представительный. Он отвечает за форму представления данных, например, за перекодировку данных из одной систему в другую. Часто встречающийся на практике пример необходимости такой перекодировки – это обмен информацией между крупными ЭВМ и ПК. На этих двух типах вычислительных машин одни и те же символы представлены разными кодами, именно поэтому при обмене данными их приходится перекодировать.

Седьмой (высший) уровень – прикладной. Это уровень прикладных подсистем компьютерной сети. Под прикладными сетевыми подсистемами понимают группу подсистем, которая упрощает доступ к ресурсам и взаимодействие в сети.

Используя ресурсы Интернет, найти ответы на вопросы:

Задание 1

  1. Классификация компьютерных каналов связи(по способу кодирования, по способу коммуникации, по способу передачи сигнала)
широковещательные сети; сети с передачей от узла к узлу.
2. Характеристика кабельных каналов передачи информации (коаксиальный кабель, витая пара, телефонный кабель, оптоволоконный кабель)
  • проводные – телефонные, телеграфные (воздушные) линии связи;
  • кабельные – медные витые пары, коаксиальные, оптоволоконные;

а также на основе электромагнитных излучений:

  • радиоканалы наземной и спутниковой связи;
  • на основе инфракрасных лучей.
  • кабели на основе скрученных (витых) пар медных проводов;
  • коаксиальные кабели (центральная жила и оплётка из меди);
  • волоконно-оптические кабели.

Кабели на основе витых пар
Кабели на основе витых пар служат для передачи цифровых данных, широкое применение получили в компьютерных сетях. Возможно, также использовать их и для передачи аналоговых сигналов. Скручивание проводов снижает влияние внешних помех на полезные сигналы и уменьшает излучаемые электромагнитные колебания во внешнее пространство. Экранирование удорожает кабель, усложняет монтаж и требует качественного заземления. На рис. представлена типовая конструкция UTP на основе двух витых пар.

Рис. Конструкция кабеля с незащищенной витой парой.

В зависимости от наличия защиты – электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности кабелей на основе витых пар:

  • незащищенная витая пара UTP (Unshielded twisted pair) – отсутствует защитный экран вокруг отдельной пары;
  • фольгированная витая пара FTP (Foiled twisted pair) – имеется один общий внешний экран в виде фольги;
  • защищенная витая пара STP (Shielded twisted pair) – имеется защитный экран для каждой пары и общий внешний экран в виде сетки;
  • фольгированная экранированная витая пара S/FTP (Screened Foiled twisted pair) – имеется защитный экран для каждой пары в фольгированной оплетке и внешний экран из медной оплетки;
  • незащищенная экранированная витая пара SF/UTP (Screened Foiled Unshielded twisted pair) – двойной внешний экран из медной оплетки и фольги, каждая витая пара без защиты.

1.5.2.2. Коаксиальный кабель
Назначение коаксиального кабеля – передача сигнала в различных областях техники: системы связи; вещательные сети; компьютерные сети; антенно-фидерные системы аппаратуры связи и др. Этот тип кабеля имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции.


Типовая конструкция коаксиального кабеля представлена на рис.1.22.

Рис. 1.22. Типовая конструкция коаксиального кабеля

Благодаря металлической экранирующей оплетке он имеет высокую помехозащищенность. Основным преимуществом коаксиала над витой парой является широкая полоса частот пропускания, что обеспечивает потенциально более высокие по сравнению с кабелями на основе витых пар скорости передачи данных, которые составляют до 500 Мбит/с. Кроме этого коаксиал обеспечивает значительно большие допустимые расстояния передачи сигналов (до километра), к нему труднее механически подключиться для несанкционированного прослушивания сети, а также он заметно меньше загрязняет окружающую среду электромагнитными излучениями. Однако монтаж и ремонт коаксиального кабеля сложнее, чем витой пары, а стоимость выше.



Рис 1.23. Одно и многомодовое оптоволокно

Здесь используются обычные светодиодные трансиверы, что снижает стоимость и увеличивает срок службы по сравнению с одномодовым кабелем. На рис 1.24. приведена характеристика затухания сигналов в оптоволокне. По сравнению с другими типами кабелей используемых для линий связи этот тип кабеля имеет существенно более низкие величины затухания сигнала, которые обычно находятся в пределах от 0,2 до 5 дб на 1000 м длины. Многомодовое оптоволокно характеризуется окнами прозрачности затухания в диапазонах длин волн 380-850, 850-1310 (нм), а одномодовое соответственно 850-1310, 1310-1550 (нм).
Рис 1.24. Окна прозрачности оптоволокна.


Преимущества оптоволоконного типа связи:

  • Широкая полоса пропускания.

Обусловлена чрезвычайно высокой частотой несущего колебания. При применении технологии спектрального уплотнения каналов связи методом волнового мультиплексирования в 2009 г сигналы 155 каналов связи со скоростью передачи по 100 Гбит/с в каждом удалось передать на расстояние 7000 километров. Таким образом, общая скорость передачи данных по оптоволокну составила 15,5 Тбит/с. (Тера = 1000 Гига);

  • Малое затухание светового сигнала в волокне.

Позволяет строить волоконно-оптические линии связи большой длины без промежуточного усиления сигналов;

  • Низкий уровень шумов в волоконно-оптическом кабеле.

Позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой избыточностью кода;

  • Высокая помехозащищенность и защищенность от несанкционированного доступа.

Обеспечивается абсолютной защищенностью оптоволокна от электрических помех, наводок и полным отсутствием излучения во внешнюю среду. Это объясняется природой светового колебания, которое не взаимодействует с электромагнитными полями других диапазонов частот, как и само оптоволокно, которое является диэлектриком. Используя ряд свойств распространения света в оптоволокне, системы мониторинга целостности оптической линии связи могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных;

  • Отсутствие необходимоости гальванической развязки узлов сети.

Оптоволоконные сети принципиально не могут иметь электрических "земельных" петель, которые возникают, когда два сетевых устройства имеют заземления в разных точках здания;

        • Высокая взрыво и пожаробезопасность, стойкость к агрессивным средам.

Из-за отсутствия возможности искрообразования оптоволокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;

        • Малый вес, объем, экономичность волоконно-оптического кабеля.

Основу волокна составляет кварц (двуокись кремния), который является широко распространенным недорогим материалом. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. Стоимость самого оптоволоконного кабеля постоянно снижается, однако применение специальных оптических приемников и передатчиков (оптоволоконных модемов), преобразующих световые сигналы в электрические и обратно, существенно увеличивает стоимость сети в целом;

        • Длительный срок эксплуатации.

Срок службы оптоволокна составляет не менее 25 лет.
Оптоволоконный кабель имеет и некоторые недостатки. Основным из них является высокая сложность монтажа. При соединении концов кабеля необходимо обеспечить высокую точность поперечного среза стекловолокна, последующую полировку среза и центровку стекловолокна при установке в разъём. Установка разъемов производится с помощью сварки стыка или методом склеивания с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого необходима высокая квалификация персонала и специальные инструменты. Кроме этого оптоволоконный кабель менее прочен и менее гибок, чем электрический, чувствителен к механическим воздействиям. Он чувствителен также и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала в кабеле. Резкие перепады температур могут привести к растрескиванию стекловолокна. Для уменьшения влияния этих факторов используются различные конструктивные решения, что сказывается на стоимости кабеля.
Учитывая уникальные свойства оптоволокна электросвязь на её основе находит всё более широкое применение во всех областях техники. Это компьютерные сети, городские, региональные, федеральные, а также межконтинентальные подводные первичные сети связи и многое др. С помощью оптоволоконных каналов связи осуществляются: кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы.

3. Характеристика беспроводных каналов передачи информации(спутниковые, радиоканалы, Wi-Fi, Bluetooth)

Беспроводные технологии - подкласс информационных технологий , служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение , радиоволны , оптическое или лазерное излучение.

В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi , WiMAX , Bluetooth . Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

Каналы передачи данных сети Интернет

Канал передачи данных - это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

Примерное графическое изображение связей между сетями Интернета

Подключение к Internet

Как мы уже говорили, компьютеры, постоянно подключенные к Internet и управляющие перемещением информации в сети (постоянное соединение), называют серверами Internet .

Временное подключение компьютера к серверу сети называют коммутируемым подключением. Если это подключение производится дистанционно (с помощью телефонных линий связи), то соединение называют соединением удаленного доступа.

Чтобы подключиться к Internet , надо подключить компьютер к другому компьютеру, имеющему постоянный IP -адрес. Каждый сервер сети имеет постоянный IP - a д pec – это межсетевой протокол (Internet Protocol , IP ) отвечающий за адресацию.

Кроме наличия IP -адреса для подключениянеобходим модем. Он должен быть подключен к компьютеру для соединения по телефонному каналу с сервером Интернет-провайдера. Модемы обеспечивают передачу цифровых компьютерных данных по аналоговым телефонным каналам со скоростью до 56 Кбит/с.

Соединение удаленного доступа можно наглядно увидеть на рисунке

Цифровой сигнал

Цифровой сигнал

Телефонная линия (аналоговый сигнал)

Также необходимо купить время у Интернет (или сервис-провайдера) . Организации, предоставляющие право на такое подключение, называются поставщиками услуг Internet . Обычно эти организации коммерческие и оказывают услуги подключения по договору. Интернет-провайдеры предоставляют телефонные линии, по которым придется звонить, чтобы получить доступ в Интернет.

При заключении договора на обслуживание провайдер предоставляет следующую информацию.

1. Номер телефона, по которому выполняется соединение удаленного доступа с помощью телефонной линии и модема.

2. Имя пользователя ( login ), которое следует ввести для регистрации в момент соединения.

3. Пароль ( password ), ввод которого подтверждает имя пользователя.

Провайдеры Интернета имеют высокоскоростные соединения своих серверов с Интернетом (1 Мбит/с и выше) и поэтому могут предоставить Интернет-доступ по телефонным каналам одновременно сотням и тысячам пользователей. Важно, что при этом телефонный номер остается свободным. Обычные и ADSL-модемы подключаются к USB-порту компьютера и к разъему телефонной розетки.

пример ADSL – модема Пример обычного модема

Многие провайдеры в качестве дополнительной услуги предоставляют электронный почтовый ящик, и можно принимать сообщения из любой точки нашей планеты. Если эта организация научная или учебная, она может предоставлять своим сотрудникам и партнерам бесплатное подключение, но при этом контролировать характер их работы в Сети.

Крупные организации подключают к Internet свои локальные сети на постоянной основе, и сами становятся частью Internet.


Способов подключения к оборудованию провайдера достаточно много. Это подключение по коммутируемой телефонной линии, по выделенной линии, по цифровой телефонной связи, по сети кабельного телевидения, по спутниковым каналам, по радиоканалу.

Каналы передачи данных

В зависимости от физической среды передачи данных каналы связи можно разделить на:

    проводные линии связи без изолирующих и экранирующих оплеток;

    кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;

    беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналов, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные каналы связи

В компьютерных сетях используются три типа кабелей.

Витая пара (twisted pair)

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Коаксиальный кабель (coaxial cable)

Пропускная способность – 50-100 Мбит/с. Допустимая длина линии связи – несколько километров.

Оптоволоконный кабель (fiber optic)

Скорость передачи данных 3Гбит/c.


Беспроводные (радиоканалы наземной и спутниковой связи)

Используют в случаях подключения неудобно расположенных или удаленных компьютерных сетей, когда прокладка кабеля затруднена или невозможна.


Радиоканалы

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями - до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

Спутниковый канал

В спутниковых системах используются антенны для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке


Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Сотовые каналы связи

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Технологии доступа в Интернет

Wi-Fi

Пользователи портативных компьютеров могут подключаться к Интернету с использованием беспроводной технологии Wi-Fi. На вокзалах, аэропортах и других общественных местах устанавливаются точки доступа беспроводной связи, подключенные к Интернету. В радиусе 100 метров портативный компьютер, оснащенный беспроводной сетевой картой, автоматически получает доступ в Интернет со скоростью до 54 Мбит/с.

PLC

PLC - новая телекоммуникационная технология, базирующаяся на использовании электросетей для высокоскоростного информационного обмена (Интернет из розетки). Позволяет передавать данные по высоковольтным линиям электропередач, без дополнительных линий связи. Компьютер подключается к электрической сети и выходит в Интернет через одну и ту же розетку. Для подключения к домашней сети не требуется никаких дополнительных кабелей. К домашней сети можно подключить различное оборудование: компьютеры, телефоны, охранную сигнализацию, холодильники и т.д.В этой технологии, основанной на частотном разделении сигнала, высокоскоростной поток данных разбивается на несколько низко скоростных, каждый из которых передается на отдельной частоте с последующим их объединением в один сигнал. При этом Интернет-устройства могут «видеть» и декодировать информацию.

Bluetooth

Bluetooth - это технология передачи данных на короткие расстояния (не более 10 м). Скорость передачи данных не превышает 1 Мбит/с.

WiMAX

WiMAX (Worldwide Interoperability for Microwave Access), аналогично WiFi - технология широкополосного доступа к Интернет. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

WiMAX частично удовлетворяет условиям сетей 4G, основанных на пакетных протоколах передачи данных. К семейству 4G относят технологии, которые позволяют передавать данные в сотовых сетях со скоростью выше 100 Мбит/сек. и повышенным качеством голосовой связи. Для передачи голоса в 4G предусмотрена технология VoIP.

RadioEthernet

RadioEthernet - технология широкополосного доступа к Интернет, обеспечивает скорость передачи данных от 1 до 11 Мбит/с, которая делится между всеми активными пользователями. Для работы RadioEthernet-канала необходима прямая видимость между антеннами абонентских точек. Радиус действия до 30 км .

MMDS (Multichannel Multipoint Distribution System)

MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Мобильный GPRS – Internet

Мобильный GPRS – Интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии GPRS необходимо иметь телефон со встроенным GPRS - модемом и компьютер. Технология GPRS обеспечивает скорость передачи данных до 114 Кбит/с. При использовании технологии GPRS тарифицируется не время соединения с Интернетом, а суммарный объем переданной и полученной информации. Вы сможете просматривать HTML-страницы, перекачивать файлы, работать с электронной почтой и любыми другими ресурсами Интернет.

Мобильный CDMA – Internet

Мобильный CDMA - Internet. Сеть стандарта CDMA - это стационарная и мобильная связь, а также скоростной мобильный интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии CDMA необходимо иметь телефон со встроенным CDMA - модемом или CDMA модем и компьютер. Технология CDMA обеспечивает скорость передачи данных до 153 Кбит/с или до 2400 Кбит/с - по технологии EV-DO Revision 0.

В настоящее время технология CDMA предоставляет услуги мобильной связи третьего поколения. Технологии мобильной связи 3G (third generation - третье поколение) - набор услуг, который обеспечивает как высокоскоростной мобильный доступ к сети Интернет, так и организовывает видеотелефонную связь и мобильное телевидение. Мобильная связь третьего поколения строится на основе пакетной передачи данных. Сети третьего поколения 3G работают в диапазоне около 2 ГГц, передавая данные со скоростью до 14 Мбит/с.

Вывод: каждый способ подключения к сети зависит от нескольких показателей, а именно от финансово положения, населенного пункта и от потребностей потребления ресурсов Интернет.