Стабилизатор напряжения для зарядного устройства. Простое регулируемое автомобильное зарядное

Стабилизатор тока позволяет получать токи в нагрузке от 1 мА до 10 А . Устройство содержит следующие основные узлы: источник опорного напряжения , мощный генератор выходного тока , прецизионный задающий узел , а также блок питания и измерительные приборы . Мощный генератор выходного тока, формирующий ток в нагрузке, построен на базе операционного усилителя по классической схеме. Регулирующий элемент выполнен на составных транзисторах VT2 и VT3.
Источник опорного напряжения представляет собой повторитель напряжения, выход которого нагружен на ряд последовательно соединенных прецизионных резисторов R4-R12. На вход повторителя приходит постоянное напряжение Uo, поступающее с выхода двухступенчатого параметрического стабилизатора напряжения на опорных диодах VD1 и VD3 серии Д818Е и КС515А через делитель на резисторах Rl — R3. На каждом из 9 нагрузочных резисторов R4 — R12 падает одинаковое напряжение, равное U0/9 Таким образом, с выходов этого делителя можно снять десять опорных напряжений в диапазоне от О до U0 Для повышения точности задания нагрузочные резисторы выбраны низкоомными с допуском 1 %. Выходные сигналы ИОН формируют в задающем узле напряжения управления мощным генератором выходного тока.

Схема источника тока для заряда АКБ

Прецизионный задающий узел представляет собой сумматор, выполненный на высокоточном ОУ серии К140УД14А. Он обеспечивает суммирование опорных напряжений, снимаемых с делителя R4-R12. Это позволяет установить на выходе ОУ DA2 с помощью переключателей SA1 — SA4 любое напряжение от 0 до 1,111 U0 в соответствии с выражением:

где К1, К2, КЗ, К4 -0, 1, 2,… 9 — коэффициенты, устанавливаемые переключателями SA1 — SA4 соответственно. Таким образом, прецизионный задающий узел позволяет дискретно установить задающее напряжение с шагом U0/9000 Для высокой точности суммирования резисторы сумматора должны иметь допуск 0,05…0,1% и сопротивление значительно большее, чем у резисторов ИОН. Такое построение задающего узла обеспечивает простоту и высокую точность установки при минимальном количестве деталей.

В этой статье поговорим еще об одном зарядном устройстве для автомобиля. Заряжать будем аккумуляторы стабильным током. Схема зарядного изображена на рисунке 1.

В качестве сетевого трансформатора в схеме применен перемотанный трансформатор от лампового телевизора ТС-180, но подойдут и ТС-180-2 и ТС-180-2В. Для перемотки трансформатора сначала его аккуратно разбираем, не забыв при этом заметить какими сторонами был склеен сердечник, путать положение U-образных частей сердечника нельзя. Затем сматываются все вторичные обмотки. Экранирующую обмотку, если будете пользоваться зарядным только дома, можно оставить. Если же предполагается использование устройства и в других условиях, то экранирующая обмотка снимается. Снимается так же и верхняя изоляция первичной обмотки. После этого катушки пропитываются бакелитовым лаком. Конечно пропитка на производстве происходит в вакуумной камере, если таких возможностей нет, то пропитаем горячим способом – в горячий лак, разогретый на водяной бане, бросаем катушки и ждем с часик, пока они не пропитаются лаком. Потом даем лишнему лаку стечь и ставим катушки в газовую духовку с температурой порядка 100… 120˚С. В крайнем случае обмотку катушек можно пропитать парафином. После этого восстанавливаем изоляцию первичной обмотки той же бумагой, но тоже пропитанной лаком. Далее мотаем на катушки по… сейчас посчитаем. Для уменьшения тока холостого хода, а он явно возрастет, так как необходимой ферропасты для склеивания витых, разрезных сердечников у нас нет, будем использовать все витки обмоток катушек. И так. Число витков первичной обмотки (см. таблицу) равно 375+58+375+58 = 866витков. Количество витков на один вольт равно 866витков делим на 220 вольт получаем 3,936 ≈ 4витка на вольт.



Вычисляем количество витков вторичной обмотки. Зададимся напряжением вторичной обмотки в 14 вольт, что даст нам на выходе выпрямителя с конденсаторами фильтра напряжение 14 √2 = 19,74 ≈ 20вольт. Вообще, чем меньше это напряжение, тем меньшая бесполезная мощность в виде тепла будет выделяться на транзисторах схемы. И так, 14 вольт умножаем на 4витка на вольт, получаем 56 витков вторичной обмотки. Теперь зададимся током вторичной обмотки. Иногда требуется быстрехонько подзарядить аккумулятор, а значит требуется увеличить на некоторое время зарядный ток до предела. Зная габаритную мощность трансформатора – 180Вт и напряжение вторичную обмотки, найдем максимальный ток 180/14 ≈ 12,86А. Максимальный ток коллектора транзистора КТ819 – 15А. Максимальная мощность по справочнику данного транзистора в металлическом корпусе равна 100Вт. Значит при токе12А и мощности 100Вт падение напряжения на транзисторе не может превышать… 100/12 ≈ 8,3 вольта и это при условии, что температура кристалла транзистора не превышает 25˚С. Значит нужен вентилятор, так как транзистор будет работать на пределе своих возможностей. Выбираем ток равный 12А при условии, что в каждом плече выпрямителя уже будет стоять по два диода по 10А. По формуле:

0,7 умножаем на 3,46, получаем диаметр провода?2,4мм.

Можно уменьшить ток до 10А и применить провод диаметром 2мм. Для облегчения теплового режима трансформатора вторичную обмотку можно не закрывать изоляцией, а просто покрыть дополнительно еще слоем бакелитового лака.

Диоды КД213 устанавливаются на пластинчатые радиаторы 100×100х3мм из алюминия. Их можно установить непосредственно на металлический корпус зарядного через слюдяные прокладки с использованием термопасты. Вместо 213- х можно применить Д214А, Д215А, Д242А, но лучше всего подходят диоды КД2997 с любой буквой, типовое значение прямого падения напряжения у которых равно 0,85В, значит при токе заряда 12А на них выделится в виде тепла 0,85 12 = 10Вт. Максимальный выпрямленный постоянный ток этих диодов равен 30А, да и стоят они не дорого. Микросхема LM358N может работать с напряжениями входного сигнала близкими к нулю, отечественных аналогов я не встречал. Транзисторы VT1 и VT2 можно применить с любыми буквами. В качестве шунта применена полоска из луженой жести. Размеры моей полоски вырезанной из консервной банки ()– 180×10х0,2мм. При указанных на схеме номиналах резисторов R1,2,5 ток регулируется в пределах примерно от 3 до 8А. Чем меньше номинал резистора R2, тем больше ток стабилизации устройства. Как рассчитать добавочное сопротивление для вольтметра прочитайте .

Об амперметре. У меня, полоска вырезанная по указанным выше размерам, совершенно случайно имеет сопротивление 0,0125Ом. Значит при прохождении через ее тока в 10А, на ней упадет U=I R = 10 0,0125=0,125В = 125млВ. В моем случае примененная измерительная головка имеет сопротивление 1200 Ом при температуре 25˚С.

Лирическое отступление. Многие радиолюбители, основательно подгоняя шунты для своих амперметров, почему то никогда не обращают внимание на температурную зависимость всех элементов собираемых ими схем. Разговаривать на эту тему можно до бесконечности, я вам приведу лишь небольшой пример. Вот активное сопротивление рамки моей измерительной головки при разных температурах. И для каких условий рассчитывать шунт?

Это означает, что ток выставленный в домашних условиях, не будет соответствовать току выставленном по амперметру в холодном гараже зимой. Если вам это по барабану, то сделайте просто переключатель на 5,5А и 10… 12А и ни каких приборов. И не бойся, как бы их не разбить, это еще один большой плюс зарядного устройства со стабилизацией тока заряда.

И так, дальше. При сопротивлении рамки равном 1200Ом и токе полного отклонения стрелки прибора 100мкА нам нужно подать на головку напряжение 1200 0,0001=0,12В = 120млВ, что меньше, чем падение напряжения на сопротивлении шунта при токе 10А. Поэтому последовательно измерительной головке поставьте дополнительный резистор, лучше подстроечный, что бы не мучиться с подборкой.

Монтаж стабилизатора выполнен на печатной плате (см. фото 3). Максимальный ток заряда для себя я ограничил шестью амперами, поэтому при токе стабилизации 6А и падении напряжения на мощном транзисторе 5В, выделяемая мощность при этом равна 30Вт, и обдуве вентилятором от компьютера, данный радиатор нагревается до температуры 60 градусов. С вентилятором это много, необходим более эффективный радиатор. Примерно определить необходимую . Мой вам всем совет — ставьте радиаторы рассчитанные для работы ПП приборов без куллеров, пусть лучше размеры прибора увеличатся, но при остановке этого куллера, ни чего не сгорит.


При анализе выходного напряжения осциллограмма его была сильно зашумлена, что говорит о нестабильности работы схемы т.е. схема подвозбуждалась. Пришлось дополнить схему конденсатором С5, что обеспечило стабильность работы устройства. Да, еще, для того, что бы уменьшить нагрузку на КТ819, я уменьшил напряжение на выходе выпрямителя до 18В (18/1,41 = 12,8В т.е. напряжение вторичной обмотки у моего трансформатора равно 12,8В). Скачать рисунок печатной платы. До свидания. К.В.Ю.

Дополнение. Аналог LM358 — КР1040УД1

В любом автомобиле АКБ заряжается генератором. Сам генератор выдаёт в электросеть стабилизированное напряжение, не превышающее 14,2-14,4 Вольта. Интересно то, что для полной зарядки АКБ к его клеммам необходимо подвести 14,5 Вольт или больше, что зависит от типа батареи. И любой штатный аккумулятор, находясь под капотом авто, никогда не будет заряжен на 100%. Вывод: цикл полной зарядки можно провести, если использовать зарядные устройства. Дальше речь пойдёт об их правильной эксплуатации.

Самое простое – зарядка стабилизированным током

Существует класс зарядных устройств, способных регулировать выходной ток. Пользоваться таким оборудованием просто, надо только знать, чему равен наибольший зарядный ток для каждого аккумулятора. Смотрим на корпус АКБ, находим значение ёмкости:

Этикетка аккумулятора BOSCH Silver

Значение, как видите, указано в ампер-часах. Обычно встречаются следующие цифры: 55 либо 60 Ah. Помните, что максимальный зарядный ток – это одна десятая электрической ёмкости, делённая на час.

Пример: 60 делим на 10 и получаем 6. Значит, АКБ ёмкостью 60 А*ч нельзя заряжать током, превышающим 6 Ампер.

Полный цикл заряда, проводимого с использованием максимально допустимого тока, равен 10-ти часам. Это следует из теории. На практике, однако, всё выглядит сложнее:

  • При достижении заряда, составляющего 75% ёмкости, силу тока уменьшают вдвое. Для свинцово-кислотных АКБ при таком уровне заряда на клеммах будет следующее напряжение – ровно 14,4 В;
  • Заряжая необслуживаемую батарею, уменьшайте ток ещё в 2 раза, как только напряжение на клеммах достигнет 15-ти Вольт (85-90% заряда);
  • Нужно помнить о том, что действительное значение ёмкости зависит от температуры. При -30 Гр. Цельсия она снижается до 50%. Значит, если планируете эксплуатировать батарею при низких температурах, никогда не доводите заряд до 100% от номинала.

Из совета под номером «1» следует вывод: через шесть, максимум через семь часов выполнения зарядки надо проконтролировать, чему равно напряжение на клеммах. Если вам неизвестно, чему оно должно быть равно при заряде 75%, просто уменьшите ток вдвое.

Батарея считается полностью заряженной, если напряжение на её клеммах при проведении зарядки не меняется. Проведите замеры дважды с интервалом в 1 час. Этого будет достаточно.

Использование стабилизаторов напряжения

Стандартное зарядное устройство позволяет регулировать силу тока и ничего больше. Тем не менее, в современном оборудовании предусмотрено наличие второго режима, в котором оператор может устанавливать значение напряжения.



Современное зарядное устройство с возможностью установки вольтажа

По идее, использовать режим стабилизированного напряжения нужно на втором этапе зарядки. То есть сначала АКБ заряжают стабилизированным током, а затем, дойдя до 50% ёмкости, можно установить фиксированное напряжение:

  • 14,4 В – чтобы зарядить батарею на 70-80%;
  • 15 В – чтобы довести заряд до 85-90% ёмкости;
  • 16 В – так батарея зарядится на 95-97%.

Суть в том, что нельзя просто выставить на клеммах 16 Вольт и забыть об АКБ на пару часов. Если указанное напряжение подавать на разряженный аккумулятор, вы получите силу тока 40-50 А. В принципе, на начальном этапе такие значения будут допустимыми. Но разные клеммы, провода, а также внутренние схемы оборудования значительную силу тока не выдержат.

В каждом зарядном устройстве, способном стабилизировать напряжение, предусмотрена встроенная защита. Она сработает сразу, как только сила зарядного тока превзойдёт 30 Ампер. Будьте внимательны, не заряжайте напряжением 16 и даже 15 Вольт полностью «севший» аккумулятор!

По мере зарядки АКБ, если используется постоянное напряжение, сила тока будет снижаться. Именно поэтому проводить зарядку стабилизированным напряжением рекомендуют на финальном этапе. Батарея считается заряженной, когда выполнено одно условие: сила тока приблизилась к минимуму и не меняется в течение часа.

Зимняя эксплуатация АКБ

Совет, актуальный для зимы, звучит просто: не оставляйте разряженный аккумулятор в условиях отрицательных температур. Чем ближе заряд находится к 0%, тем ниже концентрация кислоты в электролите. Ну а вода при температуре 0 Гр. имеет обыкновение замерзать.



Температура замерзания всегда зависит от плотности

Если есть подозрение, что внутри АКБ образовался лёд, сначала проводят прогрев. А уж затем, когда лёд растает, батарею можно будет заряжать.

Существует следующая рекомендация: если мотор на морозе не заводится, но АКБ ещё не разряжен, нужно просто включить свет фар и подождать минут 5. В результате лёд расплавится, двигатель запустится, а дальше начнёт работать генератор. В некоторых случаях, возможно, это действительно срабатывает. Но лучше отогревать АКБ в помещении.

Не заряжайте аккумулятор, если нет уверенности в том, что лёд внутри «банок» полностью отсутствует. Нарушив это правило, можно вызвать повреждение контактных пластин. Номинальная ёмкость в результате снизится, и значительно.

Отключив аккумулятор от зарядного устройства, можно проверить, до какой степени он в данный момент заряжен:

  • Если напряжение в отсутствие нагрузки равно 12,65 В, значит заряд АКБ составляет 99-100%;
  • Напряжение 12,1 В соответствует 50-процентному заряду;
  • 11,7 В – полный разряд;
  • Если напряжение не превышает 11 Вольт, аккумулятор подлежит замене.

Можете заряжать батарею аккумулятора, не снимая её с автомобиля. Тогда обязательно нужно отключать минусовую клемму, а уж затем подсоединяют «крокодилы» стабилизатора:



Как отключить минусовую клемму

«Минусовой» контакт АКБ имеет обыкновение окисляться. Здесь вам помогут напильник, наждачная бумага и обычный нож, если его не жалко.

Можно пытаться запустить стартёр, используя «внешний» АКБ. Но тогда штатную батарею необходимо отключать. Сделать это можно указанным способом – достаточно отсоединить одну клемму (минусовую).

Видео - пример

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

Простое зарядное устройство стабилизатор тока из подручных материалов

Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.

В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:

  • два входа (инвертирующий и неинвертирующий);
  • один выход.

Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.

Зарядное устройство или простой стабилизатор – это прибор, который:

  • сглаживает пульсации сети;
  • поддерживает прямую линию графика тока на одном уровне.

Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.

Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.

В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.

Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.

Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.

Сборка устройства

Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.


Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет и зарядного устройства.