Биотехнология. Презентация - успехи современной биотехнологии Презентация на тему биотехнология




Сегодня биотехнологии человек широко применяет: так созданы бактерии, которые используют при очистке сточных вод; бактерии, которые разлагают нефть при нефтяных разливах; биотехнологии широко применяют в медицине: созданы и создаются антибиотики различного спектра действия; синтезируются различные гормоны: н-р гормон роста; инсулин.




Генная инженерия - это искусственный перенос нужных генов от одного вида живых организмов (бактерий, животных, растений) в другой вид, для создания организма с необходимыми свойствами. Удобными объектами генной инженерии чаще всего являются микроорганизмы (бактерии).















СПИСОК КОМПАНИЙ, КОТОРЫЕ ИСПОЛЬЗУЮТ В ПРОДУКЦИИ ГМО Coca-Cola (Кока-Кола) Nestle (Нестле) - всем известно, но особенно детское питание!!! Kelloggs (Келлогс) - готовые завтраки и кукурузные хлопья Heinz Foods (Хайенц Фудс) - соусы, кетчупы Unilever (Юнилевер) - детское питание!!! Майонезы, соусы Hersheys (Хёршис) - шоколад, безалкогольные напитки McDonalds (Макдональдс) PepsiCo (Пепси-Кола) Danon (Данон) - кисломолочные продукты Cadbury (Кэдбери) - шоколад. Similac (Симилак) - детское питание Mars (Марс) - Марс, Сникерс, Твикс. Кроме того, если вы видите на этикетке Е101, 270, 320, 570 и прочие, то знайте, что перед вами ГМО.



Аргументы «за» ГМО: 1. Решение продовольственной проблемы. 2. Развитие ГМ-технологий востребовано медициной, где их достижения давно и успешно применяются. 3. Риски от потребления пищевых продуктов из ГМО минимальны (чужеродный белок разлагается как обычный) 4. Появление у сельскохозяйственных растений свойств, обеспечивающих защиту от порчи и вредителей, снижает потребность в применении сельхозхимии, вред которой доказан. 5.ГМ-технологии по своим результатам не отличаются от мутаций, постоянно происходящих в живой природе, а от технологии классической селекции – и по своей структуре, но являются более щадящими для усовершенствуемого растения. 6. ГМО позволяют создавать биотопливо, что приводит к энергосбережению.


Аргументы «против» ГМО: Угроза организму человека – аллергические заболевания, нарушения обмена веществ, появление желудочной микрофлоры, стойкой к антибиотикам, канцерогенный и мутагенный эффекты. Угроза окружающей среде – появление вегетирующих сорняков, загрязнение исследовательских участков и др. Глобальные риски – активизация критических вирусов, экономическая безопасность.



Клонирование – создание многочисленных генетических копий одного индивида с помощью бесполого размножения. Впервые успешный эксперимент по клонированию был осуществлен в конце 60-х гг. 20 века в Оксфордском университете Гёрдоном на лягушке, ученый доказал, что информации, содержащейся в ядре любой клетки достаточно для развития полноценного организма. В 1996 г. В Шотландии клонировали овцу Долли из клетки эпителия молочной железы. (рис. 94, стр.187).


Существуют этические аспекты развития биотехнологии! Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки-биоэтики. Биоэтика- наука об этичном отношении ко всему живому, в том числе и к человеку. В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Всякое изменение генома человека может производиться только лишь на соматических клетках.


Перспективы будущего. Сегодня уже известны примеры вживления в организм человека микрочипов, клонирование человеческих органов находится в стадии разработки, кроме того существуют специальные костюмы которые помогают парализованным людям передвигаться, но пока они находятся на стадии тестирования. Помимо технологий для человеческого тела, специалисты биотехнологий разрабатывают возможности увеличения количества белка в растениях, что позволит в будущем отказаться от мяса. В медицине разрабатываются вакцины против известных болезней, кроме того исследуется область омоложения клеточного уровня человека, что позволит замедлить старение. В промышленном секторе биотехнологии используются для получения биотоплива и биогаза, что снизит загрязнение окружающей среды и сократит размеры использования природных ресурсов.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Биотехнология, ее достижения и перспективы развития. Этические аспекты некоторых достижений в биотехнологии. Клонирование животных

БИОТЕХНОЛОГИЯ. химическая бионика. Бионика - это использование секретов живой природы с целью создания более совершенных технических устройств. В широком смысле биотехнология - это использование живых организмов и биологических процессов в производстве, т.е. производство необходимых для человека веществ с использованием достижений микробиологии, биохимии и технологии, в которых используются бактерии, микроорганизмы и клетки различных тканей.

Микроб, этот гадкий утенок первых лет эпидемиологии, благодаря успехам науки и техники, достижениям человеческого гения, превратился в прекрасного лебедя генетической инженерии современной биотехнологии и индустрии живых клеток. Б.Я. Нейман

Микроорганизмы характеризуются большой скоростью размножения, часто путем простого деления пополам. Например: бактериальная клетка в благоприятных условиях делится пополам через каждые 20-25 минут. 2. Разнообразны по физиологическим и биохимическим свойствам, некоторые живут в условиях, не пригодных для жизни других. Например: выдерживают высокий уровень радиации, высокие (75–105°С) и низкие (-80°С) температуры, концентрацию хлорида натрия до 30%, отсутствие кислорода (анаэробы).

3. Очень продуктивны. Например: 1 корова массой 500 кг вырабатывает в сутки 0,5 кг белка. 500 кг растений – 5 кг белка. 500 кг дрожжей – 50 т белка (а это масса 10 слонов!) ! При определенных условиях микробная клетка способна за равное время продуцировать в 100 000 раз больше белка, чем животная клетка. При этом использует дешевые вещества (крахмальные растворы, сточные воды). 4. Чрезвычайная приспособляемость, т.е. их можно быстро и легко селекционировать

Например: чтобы получить новый сорт хлебного злака, необходимы десятилетия или даже столетия, а у кистевидной плесени всего за 30 лет удалось в 1000 раз повысить продуктивность. 5. Микроорганизмы повсеместно распространены в природе, играют важную роль в круговороте веществ (благодаря большому разнообразию микроорганизмы бывают автотрофами, хемоавтотрофами и гетеротрофами, в трофических цепях часто являются редуцентами).

Использование микроорганизмов. Пищевая промышленность. Химическая промышленность. Металлургия. Сельское хозяйство. Охрана природы Хлебопечение, Виноделие,

Сыроварение, получение молочно-кислых продуктов, уксуса, кормовых белков. Производство антибиотиков, витаминов, гормонов, аминокислот, синтетических вакцин, получение метана как топлива. Выщелачивание некоторых металлов из бедных руд (медь, уран, золото, серебро). Производство силоса и азотфиксаторов, биологическая защита растений. Очистка сточных вод. Ликвидация разлива нефти.

Биотехнология – производство необходимых человеку продуктов и материалов с помощью биологических объектов и процессов. (Появление термина “биотехнология” в 1970-х гг. связано с успехами молекулярной генетики.)

Методы биотехнологии: 1) Клеточная инженери я – метод получения новых клеток и тканей на искусственной питательной среде. В основе метода лежит высокая способность живых культур к регенерации. 1-ый метод – Культивирование. Метод основан на способности клеток растений и животных делиться при помещении их в питательную среду, где содержатся все необходимые для жизнедеятельности вещества.. Например: Культура клеток женьшеня нарабатывает ценные для человека вещества, выращенные клетки кожи используют для лечения ожогов.

2-ой метод – Реконструкция (метод “ in vitro ”– в пробирке). Помещая клетки растений в определенные питательные среды, размножают редкие и ценные виды. Это позволяет создавать безвирусные культуры редких растений. 3-ий метод – Клонирование. Метод пересадки ядер соматических клеток в яйцеклетки позволяет получать генетической копии одного организма.

2) Хромосомная инженерия 1-ый метод– Метод гаплоидов. Метод основан на выращивании гаплоидных растений с последующим удвоением хромосом. Всего за 2–3 года получают полностью гомозиготные растения вместо 6–8 лет инбридинга. 2-ой метод-Метод полиплоидов. Получение полиплоидных растений в результате кратного увеличения хромосом 3-ий метод -замена некоторых хромосом в геноме одного организма на сестринские из генома другого организма этого же или близкого вида.

3) Генная инженерия – основана на выделении (или на искусственном синтезе) нужного вида из генома одного организма и введении его в геном другого организма, зачастую далекому по происхождению (впервые процесс был проведен в 1969 году). Например: Излюбленный объект генных инженеров – кишечная палочка. С помощью нее получают соматотропин (гормон роста), интерферон (белок, который культивирование помогает справиться со многими вирусными инфекциями), инсулин (гормон поджелудочной железы) Растения и животные, геном которых изменен с помощью подобных операций, называют трансгенными.

В 1983 в США, Бельгии и Германии впервые получены трансгенные растения. Сейчас – 17 стран выращивают трансгенные растения, которые имеют необходимые для человека сроки созревания, их плоды обладают способностью к длительному хранению и не теряют товарный вид при транспортировке.

Уже получены трансгенные свиньи, овцы и кролики в геном которых были введены гены различного происхождения – вирусов, микроорганизмов, грибов, человека; получены трансгенные растения с генами животных, микроорганизмов, вирусов и искусственно созданными генами. Большая часть трансгенных культур выращивается в США.

Например: Китай – табак, рис, соя, томаты, быстрорастущие сорта, которые могут расти на засоленных почвах. США – хлопчатник, кукуруза, картофель – устойчивы к вредителям, так как эти растения вырабатывают энтомоксин

Генетики работают над получением растений-вакцин, т.е. растений содержащих готовые антитела на различные заболевания или вещества, препятствующие развитию болезни. Например: картофель вырабатывает антитела холеры (Россия). Красный помидор содержит в 3,5 раза больше ликонина (красный пигмент). Ликонин, обладая окислительными свойствами, снижает вероятность раковых заболеваний (США).

IV. Этические аспекты развития некоторых исследований в биотехнологии. – Клонирование человека. – Создание генетически модифицированных штаммов вирусов и бактерий. Клони́рование челове́ка - прогнозируемая методология, заключающаяся в создании эмбриона и последующем выращивании из эмбриона людей, имеющих генотип того или иного индивида, ныне существующего или ранее существовавшего.

Выполнила: преподаватель химии, биологии ГБПОУ ЧТПрИС Дубровина Л.В.


1 слайд

2 слайд

3 слайд

Биотехнология - это не просто новомодное, броское название одной из древнейших сфер деятельности человека; так могут думать одни только скептики. Само появление этого термина в нашем словаре глубоко символично. Оно отражает широко распространенное, хотя и не общепринятое мнение: считается, что применение биологических материалов и принципов в ближайшие десять - пятьдесят лет радикально изменит многие отрасли промышленности и само человеческое общество.

4 слайд

Биотехнология - это интеграция естественных и инженерных наук, позволяющая наиболее полно реализовать возможности живых организмов или их производные для создания и модификации продуктов или процессов различного назначения. В результате стремительного прогресса разных составных частей физико-химической биологии, возникло новое направление в науке и производстве, получившее наименование биотехнологии. Это направление сформировалось за последние два десятка лет и уже сейчас получило мощное развитие.

5 слайд

6 слайд

Впервые термин "биотехнология" применил венгерский инженер Карл Эреки в 1917 году Отдельные элементы биотехнологии появились достаточно давно. По сути, это были попытки использовать в промышленном производстве отдельные клетки (микроорганизмы) и некоторые ферменты, способствующие протеканию ряда химических процессов.

7 слайд

Так, в 1814 году петербургский академик К. С. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

8 слайд

Первый антибиотик - пенициллин - был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине.

9 слайд

Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно (недаром химический синтез тетрациклина советским учёным академиком М. М. Шемякиным считается одним из крупнейших достижений органического синтеза). И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

10 слайд

11 слайд

Микробиологический синтез Развитие микробиологической промышленности, выпускающей ценные продукты биосинтеза, позволило накопить очень важный опыт конструирования, производства и эксплуатации принципиально нового промышленного оборудования. Современное микробиологическое производство - производство очень высокой культуры. Технология его очень сложна и специфична, обслуживание аппаратуры требует овладения специальными навыками, ведь всё производство работает только в условиях строжайшей стерильности: стоит попасть в ферментатор лишь одной клетке микроорганизма другого вида, как всё производство может остановиться - «чужак» размножится и начнёт синтезировать совсем не то, что нужно человеку.

12 слайд

13 слайд

В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, полупродукты для дальнейшего синтеза разнообразных веществ, феромоны (вещества, с помощью которых можно управлять поведением насекомых), органические кислоты, кормовые белки и другие. Технология производства этих веществ хорошо отработана, получение их микробиологическим путём экономически выгодно.

14 слайд

15 слайд

Иммобилизованные ферменты находят применение и в медицине. Так, в нашей стране для лечения сердечно-сосудистых заболеваний разработан препарат иммобилизованной стрептокиназы (препарат получил название «стрептодеказа»). Этот препарат можно вводить в сосуды для растворения образовавшихся в них тромбов. Растворимая в воде полисахаридная матрица (к классу полисахаридов относятся, как известно, крахмал и целлюлоза, близким к ним по строению был и подобранный полимерный носитель), к которой химически «привязана» стрептокиназа, значительно повышает устойчивость фермента, снижает его токсичность и аллергическое действие и не влияет на активность, способность фермента растворять тромбы.

16 слайд

17 слайд

18 слайд

Плазмиды Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью небольших кольцеобразных молекул ДНК - плазмид, присутствующих в бактериальных клетках. В плазмиды «вклеивают» необходимые гены, а затем такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают такие плазмиды целиком. После этого плазмида начинает работать в клетке как ген, изготавливая в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков.

19 слайд

20 слайд

Итак, какова же структура биотехнологии? Учитывая, что биотехнология активно развивается и структура её окончательно не определилась, можно говорить лишь о тех видах биотехнологии, которые существуют в настоящее время. Это клеточная биотехнология - прикладная микробиология, культуры растительных и животных клеток (об этом шла речь, когда мы говорили о микробиологической промышленности, о возможностях клеточных культур, о химическом мутагенезе). Это генетическая биотехнология и молекулярная биотехнология (они обеспечивают «индустрию ДНК»). И наконец, это моделирование сложных биологических процессов и систем, включающее инженерную энзимологию (об этом мы говорили, когда рассказывали об иммобилизованных ферментах).

21 слайд

Очевидно, что биотехнология имеет огромное будущее. И дальнейшее её развитие тесно связано с одновременным развитием всех важнейших отраслей биологической науки, исследующих живые организмы на разных уровнях их организации. Ведь как бы ни дифференцировалась биология, какие бы новые научные направления не возникали, объектом их исследования всегда будут живые организмы, представляющие собой совокупность материальных структур и разнообразнейших процессов составляющих физическое, химическое и биологическое единство. И этим - самой природой живого - предопределяется необходимость комплексного изучения живых организмов. Поэтому естественно и закономерно что биотехнология возникла в результате прогресса комплексного направления - физико-химической биологии и развивается одновременно и параллельно с этим направлением.

22 слайд

В заключение надо отметить ещё одно важное обстоятельство, которое отличает биотехнологию от других направлений науки и производства. Она исходно ориентирована на проблемы, которые тревожат современное человечество: производство продуктов питания (прежде всего белка), сохранение энергетического равновесия в природе (отход от ориентировки на использование невосполнимых ресурсов в пользу ресурсов восполнимых), охрана окружающей среды (биотехнология - «чистое» производство, требующее, правда, больших затрат воды). Таким образом, биотехнология - закономерный результат развития человечества, признак достижения им важного, можно сказать поворотного, этапа развития.































1 из 30

Презентация на тему: Биотехнологии

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Биотехноло гия - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии. Биотехноло гия - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии. Возможности биотехнологии необычайно велики благодаря тому, что ее методы выгоднее обычных: они используются при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду и др.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

Биотехнологией часто называют применение генной инженерии в 20-21 веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искуственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов. Биотехнологией часто называют применение генной инженерии в 20-21 веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искуственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

№ слайда 5

Описание слайда:

№ слайда 6

Описание слайда:

№ слайда 7

Описание слайда:

№ слайда 8

Описание слайда:

В 1814 году академиком К.С. Кирхгоф было открыто явление биологического катализа, и им была предпринята попытка биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1814 году академиком К.С. Кирхгоф было открыто явление биологического катализа, и им была предпринята попытка биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника).

№ слайда 9

Описание слайда:

А в 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях. Учёный предложил применить диастазу для осахаривания растительных отходов. Таким образом, уже в начале XX века наблюдается активное развитие бродильной и микробиологической промышленности. В эти же годы были предприняты первые попытки использовать ферменты в текстильной промышленности. А в 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях. Учёный предложил применить диастазу для осахаривания растительных отходов. Таким образом, уже в начале XX века наблюдается активное развитие бродильной и микробиологической промышленности. В эти же годы были предприняты первые попытки использовать ферменты в текстильной промышленности.

№ слайда 10

Описание слайда:

В 1916-1917 годах русский биохимик А. М. Коленев пытался разработать способ, который позволил бы управлять действием ферментов в природном сырье при производстве табака. Определённый вклад в развитие практической биохимии принадлежит академику А.Н. Баху, который создал важное прикладное направление биохимии - техническую биохимию. В 1916-1917 годах русский биохимик А. М. Коленев пытался разработать способ, который позволил бы управлять действием ферментов в природном сырье при производстве табака. Определённый вклад в развитие практической биохимии принадлежит академику А.Н. Баху, который создал важное прикладное направление биохимии - техническую биохимию.

№ слайда 11

Описание слайда:

А.Н. Бах и его ученики разработали множество рекомендаций по улучшению технологий обработки самого различного биохимического сырья, совершенствованию технологий хлебопечения, пивоварения, виноделия, производства чая и табака, а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами. Все эти исследования, а также прогресс химической и микробиологической промышленности и создание новых промышленных биохимических производств стали главными предпосылками возникновения современной биотехнологии.В производственном отношении основой биотехнологии в процессе её формирования стала микробиологическая промышленность. А.Н. Бах и его ученики разработали множество рекомендаций по улучшению технологий обработки самого различного биохимического сырья, совершенствованию технологий хлебопечения, пивоварения, виноделия, производства чая и табака, а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами. Все эти исследования, а также прогресс химической и микробиологической промышленности и создание новых промышленных биохимических производств стали главными предпосылками возникновения современной биотехнологии.В производственном отношении основой биотехнологии в процессе её формирования стала микробиологическая промышленность.

№ слайда 12

Описание слайда:

Первый антибиотик - пенициллин - был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине. Первый антибиотик - пенициллин - был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине.

№ слайда 13

Описание слайда:

Можно выделить следующие основные этапы развития биотехнологии: Можно выделить следующие основные этапы развития биотехнологии: 1) Развитие эмпирической технологии - неосознанное применение микробиологических процессов (хлебопечение, виноделие) примерно с VI тысяч лет до нашей эры. 2) Зарождение фундаментальных биологических наук в XV-XVIII веке. 3) Первые внедрения научных данных в микробиологическое производство в конце ХIХ-начале XX века - период революционных преобразований в микробиологической промышленности. 4) Создание научно-технических предпосылок возникновения современной биотехнологии в первой половине XX века (открытие структуры белков, применение вирусов в изучении генетики клеточных организмов).

№ слайда 14

Описание слайда:

5) Возникновение собственно биотехнологии как новой научно-технической отрасли (середина XX века), связанное с массовым рентабельным производством препаратов; организация крупнотоннажных производств по получению белка на углеводородах. 5) Возникновение собственно биотехнологии как новой научно-технической отрасли (середина XX века), связанное с массовым рентабельным производством препаратов; организация крупнотоннажных производств по получению белка на углеводородах. 6) Появление новейшей биотехнологии, связанное с применением в практике генной и клеточной инженерии, инженерной энзимологии, иммунной биотехнологии. микробиологическое производство - производство очень высокой культуры. Технология его очень сложна и специфична, обслуживание аппаратуры требует овладения специальными навыками. В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, полупродукты для дальнейшего синтеза разнообразных веществ, феромоны (вещества, с помощью которых можно управлять поведением насекомых), органические кислоты, кормовые белки и другие. Технология производства этих веществ хорошо отработана, получение их микробиологическим путём экономически выгодно.

№ слайда 15

Описание слайда:

Главными направлениями биотехнологии являются: Главными направлениями биотехнологии являются: 1) производство с помощью микроорганизмов и культивируемых эука-риотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок; 2) применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней; 3) создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.