Как работает дроссель в светильнике. Основные функции элементов лампы. Основный функции ПРА

Схемы для подключения ЛДС

Для подключения обычных ламп дневного света существует несколько схем. При их применении необходимо обращать внимание на суммарную мощность нагрузки (особенно при подборе дросселей-балластов) и напряжения на отдельных элементах (особенно стартерах - стартеры выпускаются двух типов: полное напряжение (220В) и половинное)

В некоторых дросселях-балластах имеется первичная коммутация проводников В связи с этим схема подключения ЛДС может немного измениться. Поможет в этом схема на корпусе пуско-регулирующего устройства.

Большинство схем с применением ЛДС имеет на входе конденсатор-фильтр для защиты потребителей от помех (импульсов) при включении-выключении приборов.

  • Подключение лампы дневного света.
  • подключение ЛДС
  • подключение люминесцентных ламп.
  • Схемы с конденсатором
  • Современные схемы подключения люминесцентных ламп дневного света
  • схемы подключения ЛДС

1. Самая простая схема для подключения одиночной лампы дневного света . При использовании одиночных ламп возможно мерцание света лампы, что неблагоприятно сказывается на восприятии света. В этом случае следует отдавать предпочтение современным электронным схемам пуско-регулирующих устройств (ПРА). Там же могут быть указаны предельные мощности нагрузки на данный прибор.


2. В светильниках с применением ЛДС обычно используют парное количество ламп (2 или 4). В них эффект мерцания света менее заметен.

При этом сами трубки ламп соединяются парами последовательно или параллельно. В одной из веток может ставиться фазосдвигающий конденсатор для уменьшения общего мерцания - лампы мерцают поочередно и суммарно имеем более стабильное свечение.

а) Последовательная схема. (на стартерах половинное напряжение - тип S2).

б) Параллельная схема. (на стартерах полное напряжение 220В)

в)Параллельная схема с фазосдвигающим конденсатором.

г) Современные схемы. В современных люминесцентных светильниках применяют бездроссельную и безстартерную схему. Эти устройства заменяет электронная схема (электронный балласт), обеспечивающая надежный пуск и стабильную работу ЛДС.

Промышленность выпускает два вида электронных устройств для пуска и работы люминесцентных ламп:

В пластиковом корпусе из которого выходят подсоединительные проводники.Схема подключения обычно нарисована на корпусе прибора.


Сама электронная плата без защитного корпуса, вставляемая в специальные держатель. В момент написания статьи его размеры близки к размерам спичечного коробка. При обслуживании такой электронной платы следует обратить внимание на состояние защитного лакового покрытия. Оно легко разрушается при вытягивании из держателей. При последующей установке назад возможно замыкание элементами крепления участков платы и выхода ее из строя. Можно кромку платы обвернуть изолентой в месте упора держателей.

Эти же схемы применяют и в настольных люминесцентных лампах.


Анализ поисковых запросов показывает, что часть пользователей интересуется люминесцентными светильниками. Применяются обычно светильники из двух или .

На данный момент могу проинформировать о наличии электронного балласта для светильника из 4-х ламп по 18 Вт. Вскрытие корпуса показало, что в нем применена схема аналогичная для ламп-экономок. На одной плате смонтировано две схемы для подключения двух ЛДС каждая..


На мой взгляд экономичнее в плане ремонта использовать 2 отдельных балласта (другого типа) по одному на две лампы. В первом случае при поломке придется менять весь прибор, а во втором две лампы будут работать.

д) Редкие схемы. В некоторых случаях применяют бездроссельную схему с уможителем напряжения. Поскольку для розжига ЛДС необходимо напряжение несколько большее 220В, в этой схеме имеется умножитель напряжения (4 диода и 2 конденсатора), обеспечивающий стабильное включение и работу лампы даже с перегоревшей нитью разогрева (она здесь просто не нужна). Параметры электронных компонентов не указаны (схема интересна только отдельным энтузиастам)- их легко можно найти при надобности на других сайтах. Диоды и конденсаторы в принципе легкопокупаемые на радиорынках, а вот с резистором (довольно большая мощность) могут быть проблемы в наличии.

Есть и другие варианты схем питания ЛДС (Н.П. постоянным током и др.), но практического применения они не имеют. При питании постоянным током на колбе лампы со временем образуется темная область (пятно), уменьшающая силу света. Высоковольтные схемы питания ЛДС приводят к быстрому износу электродов лампы.

На практике нестандартные схемы включения ЛДС никакого выигрыша во время эксплуатации НЕ ДАЮТ и интересны только для одиночных любителей попробовать свои силы.

Некоторые особеннности в работе люминесцентных ламп.

Мигание лампы, лампа не может включиться - для устранения сначала поменять стартер, если не поможет - поменять лампу, проверить напряжение в сети.

Мерцание люминесентной лампы в т.ч. и компактной экономки даже в выключенном состоянии - чаще всего встречается если выключатель установлен на нулевом проводе.

Мне понравилась фраза - лампы накаливания - это вчерашний день, лампы дневного света - сегодняшний, а полупроводниковые (LED) - завтрашний день. Электрическая проводка делается на будущее. Перетереть стены, потолок, поменять обои - данные работы делаются чаще чем замена электропроводки. Электропроводку следует делать с ориентацией на завтрашний день.

Также после 2015 года поставки люминесцентных ламп на Украину будут прекращаться. Идет переход на светодиодные источники света. Сейчас в продаже имеются практически все типы ламп (по внешнему виду) для замены устаревших источников света (ламп накаливания, люминесцентных) на современные светодиодные (LED). При установке светодиодных аналогов необходимо переделать схему подключения в самом светильнике. Фактически выбросить дросселя, стартеры, Оставляем только подсоединительные элементы (цокольный патрон, держатель), в которые вставляется (вкручивается) современня LED лампа. Светодиодные аналоги ламп подключаются напрямую в сеть 220В. Необходимые вспомогательные элементы находятся внутри самих приборов.

Современное общество стремится экономить на любых видах энергоносителей, особенно на электричестве. Это связано с постоянным возрастанием оплаты за свет. Поэтому в жизнь людей очень прочно входят и активно используются лампы дневного света.

Сама лампа состоит из стеклянной колбы, которая может быть различной формы и диаметра. По своему строению и виду они делятся:

  • компактные с цоколем Е 14 и Е 27;
  • кольцевые;
  • U- образные;
  • прямые.

Независимо от внешнего вида, каждая из ламп дневного света имеет внутри электроды, специальное люминесцентное покрытие, закачанный инертный газ с парами ртути. Из-за того, что электроды накаляются, происходит периодическое зажигание инертного газа, поэтому люминофор светится. Учитывая, что спирали могут при кратковременном разогреве перегреваться и сгорать, в этих приборах используется стартер для ламп дневного света. Стоит отметить и тот факт, что спирали в осветителях дневного света небольшого размера, им не подходит стандартное напряжение, поэтому устанавливаются специальные приборы – дроссели, задачей которых является ограничение номинального значения силы тока .

Принцип работы люминесцентной лампы

Когда осветитель подключается к сети, происходит автоматическая подача сетевого напряжения в 220 В на схему, далее оно следует на стартер. Так как контакты еще разомкнуты, то полное напряжение через прибор не идет, а попадает на дроссель, где колеблется около нуля. Этого напряжения достаточно, чтобы произошел розжиг разряда в лампочке. Как только биметаллический электрод стартера разогреется, он загибается и происходит замыкание электрической цепи, нити в люминесцентной лампе загораются. Это приводит к запуску в работу самой лампы.

В качестве электродов в дневных лампах установлены вольфрамовые нити накала . На них обязательно наносится специальное покрытие защитной пастой. Через некоторое время эта паста сгорает, что влечет перегорание нити накала. Если хотя бы одна из нитей перегорит, осветитель выходит из строя и зажигаться не будет.

Как правильно подключить осветительный прибор

Существуют схемы подключения ламп дневного света. Они очень простые и не вызывают трудности даже у неопытного человека. Для одного источника света достаточно, на собранную схему, подать напряжение через клеммы. Оно последует на дроссель, далее, на первую спираль. Затем, включается стартер, он реагирует на поступивший ток, и пропускает его дальше на вторую спираль, подключенную к клемме.

Если вам необходимо установить несколько приборов дневного света, то схемы подключения немного изменятся. Все лампы будут соединяться последовательно. Будет использоваться несколько стартеров, для каждого источника отдельно. Если вы хотите установить две лампы на один дроссель, то необходимо прочитать номинальную мощность, которая указывается на корпусе. Если мощность дросселя составляет 40 Вт, то к нему подсоединяются только два прибора с мощностью в 20 Вт.

Разработаны схемы подключения ламп без использования стартера . Их заменяют электронные балластные устройства. В таком варианте прибор дневного света включается мгновенно, нет моргания, как при включении стартера.

Подключить электронные балласты легко. Для этого достаточно ознакомиться с инструкцией, которая находится на корпусе прибора. В таких инструкциях указана схема подключения, какие контакты лампы должны быть соединены с соответствующими клеммами. Стоит отметить, что многие специалисты считают, что именно такой способ имеет большие преимущества:

  • вам не нужно наличие дополнительных элементов для управления и подключения стартера;
  • работа лампы без стартера продолжительней, так как исключается установка соединительных проводов прибора и стартера, которые часто и быстро выходят из строя.

Стоит отметить, что подключение ламп дневного накаливания не вызывает особого труда, так как в комплекте с прибором идут все необходимые элементы устройства и схемы их сборки. Вам не нужно что-то покупать дополнительно и выдумывать, или отыскивать схемы сборки устройства.

Поломки лампы дневного света, ремонт и замена

Как только вы обнаружили проблемы в работе устройства, необходимо выяснить причины неисправности, и определиться: нужна ли полная замена лампы, или достаточно поставить новый элемент. Самыми распространенными неполадками являются проблемы в работе стартера или дросселя . Когда лампа при включении зажигается лишь с одной стороны, то необходимо перевернуть ее таким образом, чтобы вход несветящейся части стал на противоположное место. В случае когда лампа продолжает светить так же, то ее можно выбросить - она неисправна.

Часто встречаются неполадки, когда светятся два конца лампы, а вся она не зажигается. Это может свидетельствовать о неисправности стартера, проводки или патрона. Начните проверку со стартера. Если он исправен, то начинайте работу с проводкой, возможно, в ней возникли замыкания.

Если лампа при включении загорается тусклым светом, а через несколько минут начинает пульсировать и вообще гаснет, то это свидетельствует о попадании в колбу воздуха . В таком случае требуется замена прибора.

Как работает дроссель, основные признаки поломки

Некоторые лампы резко и мгновенно зажигаются, но после нескольких часов работы, края источника света темнеют. На такую работу стоит сразу обратить внимание. Это свидетельствует о быстром выходе из строя прибора. Причиной поломки станет проблема в работе дросселя: пусковой и рабочий ток имеют показатели, превышающие норму. Для точной диагностики неполадки достаточно воспользоваться вольтметром , и проверить величину пускового и рабочего тока. Чаще всего специалисты находят неисправности нескольких катодов.

Некоторые пользователи наблюдают, что в лампе дневного света периодически вьется змейка. Это также указывает на проблемы в работе дросселя. В источник поступает электрическое напряжение, но разряд внутри неравномерный. Здесь также достаточно проверить величину пускового и рабочего напряжения, и при обнаружении превышения, заменить дроссель на новый.

Основные проблемы в работе стартера

Когда владелец лампы дневного света наблюдает картину постоянно или периодически гаснущего прибора, то это указывает на проблемы в работе стартера и лампы. Для точной диагностики неполадок, необходимо проверить входящее напряжение в приборе. Если его параметры гораздо выше, то достаточно заменить только лампу. Обязательно измеряйте напряжение и в стартере. Если оно ниже нормы, то необходима замена стартера.

В случае, если светильник дневного света начинает функционировать тускло, то это признак резкого снижения тока внутри до критического уровня. Это свидетельствует о неполадках дросселя. Когда вы измерили в нем напряжение и убедились, что причин к неправильной работе нет, то, возможно, ваш источник света отслужил свой срок, количество ртути внутри снизилось до минимума. Необходима замена самой колбы.

Если в лампах перегорает спираль , то это указывает на поломку или повреждение дросселя. Чаще всего – это проблемы или изнашивание изоляции. Как только источник дневного света перестает нормально работать, необходимо его сразу отключить от электричества, и найти причины поломки. Не стоит многократно пытаться включать прибор, так как поломка одного элемента, влечет проблемы в работе или выход из строя и других частей прибора.

Важно понять главное - при установке лампы дневного света, схемами подключения нужно оперировать грамотно. Только в этом случае не возникнет проблем и прибор будет функционировать качественно.

(или как мы еще привыкли их называть Лампа дневного света ) зажигаются при помощи разряда, создаваемого внутри колбы.
если кому интересно узнать об устройстве такой лампы- о их преимуществах и недостатках то можете заглянуть в .

Для того чтобы получить высоковольтный разряд применяются специальные приспособления- балластные дроссели управляемые стартером.
Работает это примерно так: внутри фурнитуры лампы размещается дроссель и конденсатор которые образуют колебательный контур. Последовательно с этим контуров устанавливается стартер- неоновая лампа с небольшим конденсатором. При прохождении тока через неоновую лампу в ней возникает электрический пробой, сопротивление лампы падает практически до нуля, но она практически сразу-же начинает разряжаться через конденсатор. Таким образом стартер хаотично открывается-закрывается и в дросселе возникают хаотичные колебания.
За счет ЭДС самоиндукции эти колебания могут иметь амплитуду до 1000 Вольт, они-то и служат источником высоковольтных импульсов зажигающих лампу.

Данная конструкция применяется в быту уже много лет и имеет целый ряд недостатков- неопределенное время включения, износ нитей накала ламп и огромный уровень радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.


Более перспективны - без стартерные устройства зажигания , где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы - на них подается напряжение, необходимое для поджига газа в лампе.


Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.


В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к "своей" цепи - тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.


Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.


Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

Люминесцентный светильник - простое и надежное устройство, которое нечасто выходит из строя. Для включения используется пусковой комплект, который состоит из стартера и дросселя. Также в его схему включены два конденсатора. Рабочий элемент стартера, это наполненная инертным газом колба, в которой находятся два электрода - простой и биметаллический. Включение светильника дневного света происходит следующим образом:

  1. При подаче напряжения, в колбе стартера возникает тлеющий разряд.
  2. Тлеющий разряд нагревает биметаллический электрод. Под действием температуры, он изменяет исходную форму, и замыкает электрическую цепь.
  3. В замкнутой цепи ток возрастает, электроды лампы разогреваются, нагревая пары ртути в колбе.
  4. В отсутствие переходного напряжения разряда, биметаллический электрод остывает, и возвращается в исходное положение. Электрическая цепь размыкается.
  5. При разрыве цепи, за счет самоиндукции дросселя, возникает бросок напряжения.
  6. Высоковольтный импульс в атмосфере аргона, которым заполнена колба, поджигает дугу между электродами лампы.
  7. Цепь замыкается через разряд в лампе, вследствие чего напряжение на стартере падает, и его повторного включения не происходит. Цепь подогрева электродов размыкается.

Почему не включается?

Первым делом, необходимо проверить, подается ли напряжение при включении светильника. Если питание подается исправно, то причина кроется в одной из трех его составных частей.

Проверить лампу и стартер, не составит труда, так как эти детали легко заменяются. Проще всего заменяется стартер, да и в хозяйстве, обычно, есть несколько исправных. С него и следует начать. Если исправного стартера под рукой нет, можно вынуть из работающего светильника. Это, кстати, будет гарантией его исправности.

Если замена стартера не помогла, пробуем поменять лампу. В случае если после замены, светильник все равно не работает, остается один подозреваемый - дроссель.

Проверка дросселя

На неисправность, еще да того как светильник перестал включаться, указывает нестабильная работа лампы дневного света. Через некоторое время после включения, появляется мерцание, или огненная «змейка» внутри колбы.

Причиной выхода дросселя из строя, являются обрыв обмотки, или межвитковое замыкание. В случае обрыва, при проверке сопротивления тестером, прибор выдаст бесконечность, в случае межвиткового замыкания - минимальное сопротивление, вплоть до нуля. Внешним признаком межвиткового замыкания будет появление запаха гари, перегрев дросселя, появление желтых или коричневых пятен на его поверхности.

При замене вышедшего из строя дросселя на новый, обратите внимание на соответствие мощностей лампы и дросселя.

При проведении ремонтных работ, надо помнить о правилах электробезопасности. Проводить все действия только с выключенным прибором, убедиться, что конденсаторы разряжены.

На сегодняшний день, традиционная пускорегулирующая аппаратура для люминесцентных ламп используется в большей части люминесцентных светильников. В частности, они широко применяются при работе самых распространенных люминесцентных ламп Т8. Главным достоинством электромагнитных дросселей, благодаря которому они пока конкурируют с электронными аналогами, можно отнести невысокую стоимость: более надежные, экономичные и функциональные электронные балласты обходятся в несколько раз дороже.

Основный функции ПРА:

Основными функциями ПРА можно назвать зажигание лампы и поддержание в норме ее светотехнических и эксплуатационных характеристик. Рабочая схема электромагнитного пускорегулирующего аппарата обычно состоит из балласта, конденсатора и стартера, который запускает работу лампы. Балласт является индуктивным сопротивлением, которое последовательно подключается с люминесцентной лампой и создает высокое напряжение (0,7-1,2 кВ) на электродах источника света. В результате, в колбе формируется газовый разряд, ведущий к розжигу лампы. При этом дроссель для люминесцентных ламп стабилизирует ток в питающей сети, а конденсатор снижает радиопомехи и компенсирует реактивную мощность, которые возникают при зажигании люминесцентной лампы. При использовании электромагнитного балласта этот процесс (розжиг лампы) происходит с частотой около 100 Гц, что в два раза выше, чем частота тока в стандартной сети питания (50 Гц). Запускается люминесцентная лампа с магнитным ПРА обычно около 1-3 секунд.

Из чего состоит дроссель для лампы:

Балласт для ламп представляет собой электромагнитный дроссель, то есть катушку с металлическим сердечником, имеющую обмотку из медного или алюминиевого провода. Диаметр провода обмотки, как правило, выбирается таким образом, чтобы дроссель для люминесцентных ламп не нагревался выше заданной температуры, необходимой для нормальной работы светильника. Потери в мощности при использовании электромагнитного балласта лежат в пределах 10-50%, в зависимости от мощности источника света – чем мощнее лампа, тем меньше потери. Согласно европейским стандартам, по уровню потерь мощности существуют три класса дросселей: B (особо низкие потери), C (пониженные потери) и D (нормальные потери). С 2001 года в странах Евросоюза балласты класса D не выпускаются. Большая часть дросселей отечественного производства относится к категории D.

Преимущества электромагнитного дросселя:

Преимуществами электромагнитных балластов можно назвать низкую стоимость, простоту в исполнении и слабую чувствительность к температурным перепадам. Однако, в сравнении с электронными аналогами, электромагнитные дроссели имеют ряд серьезных недостатков. В их числе можно отметить значительные потери в рабочей схеме, акустический шум при работе лампы, увеличенный вес светильников, меньший срок службы. Наиболее серьезным минусом, пожалуй, является относительно низкая частота розжига лампы, в результате чего освещение является мерцающим и негативно сказывается на утомляемости глаз. Помимо этого, низкая частота зажигания люминесцентной лампы способна создавать стробоскопический эффект. Если колеблющиеся или вращающиеся предметы (например, элементы токарного станка, циркулярной пилы, кухонного миксера и т.д.) движутся с частотой, равной или кратной частоте мерцания, то они будут казаться неподвижными. Поэтому на производстве является обязательной подсветка рабочих мест лампами накаливания.


Электромагнитные дроссели для газоразрядных ламп высокого давления

Для работы газоразрядных ламп высокой интенсивности, таких как металлогалогенные лампы или, например, натриевые лампы высокого давления, также необходимы пускорегулирующие аппараты (Дроссель днат или дроссель дрл). По своей конструкции, электромагнитные дроссели для газоразрядных ламп схожи с электромагнитным балластом для люминесцентных ламп. В частности, дроссель ДНаТ включает в себя рабочую схему, состоящую из ИЗУ (импульсного зажигающего устройства), балласта и компенсирующего конденсатора. Зажигание лампы происходит в результате пробоя импульсом высокого напряжения (до 6 кВ) межэлектродного пространства. Исключением из общей схемы является дроссель ДРЛ, который не содержит дополнительного зажигающего устройства, поскольку в данных лампах для розжига есть дополнительные электроды.


Нужно отметить, что для газоразрядных ламп высокого давления следует подбирать балласт, соответствующий типу и мощности источника света. Например, дроссель 250 для лампы ДНаТ должен использоваться именно с натриевой лампой мощностью 250 Вт, а дроссель 400 – соответственно с лампой на 400 Вт. Только в этом случае газоразрядная лампа будет работать согласно номинальным техническим характеристикам.

Особенности ПРА для газоразрядных ламп:

При работе с электромагнитным дросселем ДРЛ, газоразрядные лампы достаточно долго разгораются – обычно не менее 5 минут, а также имеют определенные особенности при подключении. Тем не менее, пока классический магнитный балласт наиболее часто используется для работы газоразрядных ламп. Однако, в последнее время, производители активно разрабатывают электронные балласты для газоразрядных ламп высокого давления, которые обеспечивают более стабильную, длительную и экономичную работу источников света.