Максимальная температура проводов. Измерение температуры нагрева кабелей - испытание и проверка силовых кабелей

Когда на кабельные линии подается напряжение, для них устанавливаются заданные нагрузки по току. Требование правил технической эксплуатации связано с нагревом изоляции при продолжительных нагрузках. Если длительно допустимый ток кабеля превышает предельное значение, произойдет его перегрев и разрушение изоляционного слоя с последующим повреждением. Поэтому нагрузки подбирают так, чтобы исключить опасность термического разрушения изолирующего слоя.

Причина нагрева кабеля

Количество выделяющегося при эксплуатации кабеля тепла находится по формуле:

Q = I 2 Rn Вт/см, где I - нагрузочный ток, А; n - количество жил; R - сопротивление, Ом.

Из приведенного выражения следует, чем выше потребляемый ток на электроустановке, к которой подведен кабель, тем больше последний разогревается. Причем мощность, выделяемая в жилах в виде тепла, находится в квадратичной зависимости от нагрузки.

Рассеивание тепла от работающего кабеля

Разогрев кабеля не будет постоянно расти в связи с тем, что тепло должно куда-то уходить. Причем его количество зависит от разности между температурой кабеля и окружающей среды. В конце концов наступит равновесие, и температура проводников станет постоянной.

Как рассчитать допустимую силу тока по температуре нагрева жил

Когда тепловыделение от нагрузки становится равным количеству рассеиваемого кабелем тепла, режим работы становится стабильным:

P = θ/∑S = (t ж - t ср)/(∑S), где θ - разница между температурой жилы и среды, 0 С; t ж - t ср - температурный перепад, 0 С; ∑S - термосопротивление кабеля.

Тепло будет уходить из кабеля тем больше, чем лучше проводимость среды. Длительно допустимый ток кабеля рассчитывается так: I доп = √((t доп - t ср)/(Rn∑S)), где t доп является допустимой температурой нагрева жил (зависит от типа кабеля).

Условия теплоотдачи

Лучше всего теплоотдача происходит, когда кабель находится в воде. Если он проложен в грунте, отвод тепла зависит от состава последнего и содержания в нем влаги. В расчетах обычно принимают грунта r = 120 Ом∙град/Вт, что соответствует песчано-глинистой почве с влажностью 12-14 %. Для получения точных показаний важно знать состав почвы, поскольку сопротивление изменяется в широких пределах и находится по таблицам. Его можно уменьшить изменением состава засыпки траншеи с кабелем и путем тщательной трамбовки. Пористые песок и гравий имеют теплопроводность ниже, чем глины. Поэтому засыпку кабеля производят глиной или суглинком, не содержащими шлак, строительный мусор и камни.

Кабель, проведенный по воздуху, имеет плохую теплоотдачу. Еще хуже она становится при прокладке в кабель-каналах, где появляются дополнительные воздушные прослойки, взаимный подогрев рядом расположенных кабелей и сопротивление стенок. Для таких случаев выбирают нагрузки по току как можно меньше.

Для обеспечения благоприятных температурных условий работы кабельной линии следует найти допустимые нагрузки по току для двух режимов: аварийного и длительного. В характеристиках кабелей также приводится величина допустимой температуры при коротком замыкании, которая для бумажной изоляции составляет 200 0 С, а для ПВХ - 120 0 С.

Длительно допустимый ток кабеля находится в обратно пропорциональной зависимости от его температурного сопротивления и теплоемкости внешней среды.

Необходимо принимать во внимание, что с течением времени проводимость изоляции кабеля увеличивается по причине высыхания. Сопротивление грунта составляет 70 % от суммарной величины и является определяющей в расчетах суммарной нагрузки.

Таблицы для определения допустимого тока

Есл рассчитывать вручную, то довольно сложно определить длительно допустимый ток кабеля. ПУЭ содержат специальные таблицы, где приводятся его значения для разных условий эксплуатации. Ниже приведены расчетные данные предельно допускаемых нагрузок для разных сечений медного проводника при его температуре 90 0 С и окружающего воздуха 45 0 С.

С помощью кабелей, характеристики которых приведены в таблице, передают и распределяют электроэнергию в сетях постоянного и переменного напряжения и в стационарных установках. Они не выдерживают больших растягивающих усилий и прокладываются в грунте, на открытом воздухе, в кабель-каналах. Длительно допустимая температура жилы равна 70 0 С, а при - не более 160 0 С за 4 сек. В аварийном режиме допустимый нагрев жил не превышает 80 0 С.

Характеристики проводников варьируются в широких пределах, в зависимости от маркировки, количества жил и других параметров. Длительно допустимый ток кабеля ВВГ зависит от сечения, которое определяется количеством и типом жил. Например, максимальная площадь сечения составляет 240 мм 2 , а в пятижильном - 50 мм 2 .

Длительно допустимый ток также определяется сечением, которое будет несколько больше, чем у поскольку он выполнен из алюминия. Допустимая температура эксплуатации и аварийного режима работы у обоих типов одинакова.

Кабель АВБбШв имеет особенность - он может применяться во взрывоопасных и пожапроопасных помещениях за счет наличия двойной брони из стальной ленты. Он широко распространен в строительстве. Длительно допустимый ток кабеля АВБбШв, так же, как у предыдущих изделий, зависит от температуры, которая не должна превышать 75 0 С, что несколько выше. Он определяется по таблицам и зависит от сечения жил и способа прокладки.

Заключение

Чтобы проводники припостоянной нагрузке не перегревались, необходимо подобрать длительно допустимый ток кабеля по таблицам и рассчитать отвод тепла в окружающую среду. Неправильный выбор кабеля приведет к его перегреву и разрушению изолирующего слоя, что повлечет за собой преждевременный выход изделия из строя.

При выборе кабеля учитывается масса самых разных параметров, начиная от сечения жил и заканчивая материалом изоляции. Почему важно знать такие подробности, как материал оболочки? Ведь его основная функция - защищать от поражения электрическим током. Если изоляция справляется с этой задачей, то нужно больше внимания уделить более важным характеристикам кабеля. К сожалению, подобную ошибку делают многие, на самом деле допустимая температура нагрева кабеля и материал изоляции необыкновенно связаны между собой. Каждый тип защитной оболочки рассчитан на определенную температуру, если она превышает определенные значения, то ускоряется процесс старения изоляции. Это серьезным образом влияет на срок эксплуатации кабеля, а не редко и подключенного с его помощью оборудования. Допустимая температура нагрева кабеля это тот параметр, от которого зависит не только нагрузочная способность кабеля, но и надежность его работы. Допустимая температура нагрева кабеля с изоляцией разного типаВсе виды материалов, используемых в качестве изоляции токопроводящих жил, имеют свои физические характеристики. Они обладают разной плотностью, теплоемкостью, теплопроводностью. В итоге это влияет на их способность выдерживать нагрев, так вулканизирующий полиэтилен может сохранять свои эксплуатационные характеристики вплоть до 90ºС. С другой стороны резиновая изоляция способна выдержать существенно меньшую температурную нагрузку - всего 65ºС. Допустимая температура нагрева кабеля с ПВХ - 70 градусов и это один из наиболее оптимальных показателей. Одним из наиболее важных показателей является допустимая температура нагрева кабеля с . Этот вид кабеля используется чрезвычайно широко и предназначен для работы с разным напряжением. Именно поэтому следует внимательно относиться в данной характеристике, она меняется следующим образом:

  • для напряжения 1-2 кВ максимально допустимая температура для кабелей с обедненной и вязкой пропиткой составляет 80ºС;
  • для напряжения 6 кВ изоляция с вязкой пропиткой выдерживает 65ºС, с обедненной пропиткой 75ºС;
  • для напряжения 10 кВ допустимая температура 60ºС;
  • для напряжения 20 кВ допустимая температура 55ºС;
  • для напряжения 35 кВ допустимая температура 50ºС.

Все это требует повышенного внимания к длительной максимальной нагрузке кабеля, условиям эксплуатации. Еще одним из востребованных сегодня в электротехнической промышленности материала для изоляции является сшитый полиэтилен. Он имеет сложную структуру, обеспечивающую уникальные эксплуатационные характеристики. Допустимая температура нагрева кабеля и изоляцией из сшитого полиэтилена составляет 70ºС. Одним из лидеров по данному параметру является силиконовая резина, способная выдерживать 180ºС. К чему может привести перегрев кабеляПревышение допустимой температуры нагрева кабеля приводит к тому, что свойства изоляции кардинально меняются. Она начинает покрываться трещинами, осыпаться, в результате возникает риск короткого замыкания. Срок службы кабеля с каждым превышенным градусом серьезно сокращается. Это требует более частого ремонта, затрат, поэтому лучше изначально использовать тот кабель, который предназначен для решения определенных задач. Но и этого не достаточно, необходимо регулярно контролировать температуру оболочки, особенно в тех места, где можно предположить наличие перегрева. Это могут быть места рядом с теплопроводами или создаются неблагоприятные условия для охлаждения.

Предельно допустимая температура нагрева кабеля имеет большое значение, так как от нее зависят нагрузочная способность, срок службы и надежность работы кабеля.

Каждый вид изоляции кабеля рассчитан на определенную длительно допустимую температуру, при которой старение изоляции проходит медленно. Превышение температуры нагрева кабеля выше допустимой ускоряет процесс старения изоляции и сокращает срок службы кабеля.

При нагревании кабеля наиболее быстрому старению подвергается бумажная изоляция, механическая прочность и эластичность которой при этом понижаются. Длительно допустимые температуры для силовых кабелей стационарной прокладки приведены в табл. 17.

Таблица 17.
Длительно допустимая температура нагрева жил кабелей

При включении кабеля под нагрузку вначале нагреваются его жилы, а затем изоляция и оболочка. Опытными измерениями установлено, что перепад температуры между жилой и оболочкой кабеля напряжением 6 кВ примерно 15 °С, а для кабелей 10 кВ - 20 °С. Поэтому в практических условиях обычно ограничиваются измерением температуры оболочки, учитывая, что температура жилы кабеля выше на 15-20 °С.

Температуру нагрева жил можно определить и расчетным путем по формуле

где t о6 - температура на оболочке кабеля, °С; I - длительная максимальная нагрузка кабеля, А; п - число жил кабеля; ρ - удельное сопротивление меди или алюминия при температуре, близкой к температуре жилы, Ом.мм 2 /м; S K - сумма тепловых сопротивлений изоляции и защитных покровов кабеля, Ом (определяется по справочнику); q - сечение жилы кабеля, мм 2 .

Контроль за нагревом кабелей в процессе эксплуатации осуществляется измерением температуры свинцовой или алюминиевой оболочки, или брони в тех местах кабельной трассы, где предположительно кабельная линия может иметь перегрев против допустимых температур. Такими местами могут быть прокладки вблизи теплопроводов, в среде с большим тепловым сопротивлением (шлак, трубы и т. п.), где создаются неблагоприятные условия для охлаждения кабельной линии.

Измерение температуры на поверхности кабелей, проложенных в земле, рекомендуется производить термопарами. Для установки термопар на трассе кабеля отрывают котлован размером 900х900 мм с углублением 150-200 мм в одной из стенок котлована по оси кабеля. После удаления наружного покрова, очистки брони от коррозии создают надежный контакт (легкоплавким припоем или фольгой) с проводом термопары.

Рис. 113. Измерение температуры на поверхности работающего кабеля:
1 - кабель, 2 - здание, 3 - щитки термопар, 4 - металлическая труба, 5 - теплопровод

Измерительные провода выводят через газовую трубу и подключают к специальным ящикам, после чего котлован засыпают землей. Схема измерения температуры на поверхности кабеля приведена на рис. 113. Измерение температуры на поверхности контролируемых кабелей с одновременным измерением токовых нагрузок производят в течение суток через 2-3 ч. Если в результате измерений окажется, что температура жилы кабеля на отдельных участках превышает допустимую, необходимо или снизить токовую нагрузку на кабель, или принять меры к улучшению условий его охлаждения. В некоторых случаях целесообразно заменить перегревающийся участок линии кабелем большого сечения. Измерение температуры кабелей, проложенных открыто в кабельных сооружениях, можно производить обычным лабораторным термометром, укрепляя его на оболочках кабеля. Необходимо вести тщательный контроль за температурой окружающего воздуха и работой вентиляции в кабельных сооружениях. Контроль за нагревом кабелей производят по мере необходимости.

Страница 20 из 23

Измерение температуры оболочек кабеля необходимо производить в местах, в которых кабель работает в наиболее тяжелом режиме (места пересечения кабеля с тепло- и паропроводами, в пучках действующих кабельных линий, на участках трассы с сухим или имеющим большое тепловое сопротивление грунтом), в период максимальной нагрузки кабеля.
Для определения температурного перепада Д£каб за t0б следует принимать максимальное значение температуры, а за величину тока I - максимальную нагрузку линии.
Измерение температур нагрева оболочек кабелей или окружающей среды может производиться с помощью термопар, термосопротивлений или термометров.
При контроле нагрева кабелей следует иметь в виду следующие диапазоны температур, с которыми наиболее часто приходится встречаться: температура оболочек кабеля до +60"С; температура грунта от -5 до + 25° С; температура воздуха от -40 до +45иС.
Из приведенных данных следует, что диапазоны температур составляют лишь несколько десятков градусов, причем нередко разность температур оболочек кабеля и окружающей среды составляет более 10-20" С. Это требует применения весьма чувствительных термоиндикаторов.

а) Метод термопары

При контроле нагрева кабеля термопарами необходимо, чтобы в рабочем диапазоне температур они создавали э. д. с. порядка 0,5-1 мв, что позволит применить имеющиеся в лабораториях милливольтметры и гальванометры.
Наиболее чувствительными являются термопары, изготовляемые из сплавов хромель - копель, развивающие термо-э. д. с. в 6,9 мв на 100° С.
Могут применяться также медьконстантановые термопары (4 мв на 100°С).
Термопары должны иметь два спая, один из которых размещается на кабеле, а другой - в точке, в которой температура все время фиксируется чувствительным и точным термометром (температура «холодного» спая).
Для создания хорошего контакта термопары с оболочкой кабеля целесообразно рабочий спай зачеканить в свинцовый лепесток (диск диаметром 3-4 см, толщиной 2-3 мм) и применять, как их называют на практике, «лепестковые» термопары. Такой лепесток надежно закрепляется на кабеле тафтяной или киперной лентой.
При отсутствии лепестковых термопар под рабочий спай следует вначале подложить мягкий станиоль и лишь после этого плотно прижать термопару к оболочке кабеля путем обмотки плотной тканевой лентой.
При контроле нагрева кабеля в одном месте следует закладывать не менее двух термопар для взаимного контроля показаний и резерва на случай поломки рабочего спая.
Обычно на практике приходится контролировать на каком-либо участке температуру нескольких по соседству расположенных кабелей, на которых закладывается группа термопар (до 10-20 шт.).
Все холодные спаи этих термопар обычно выводятся в одно место, в котором их температура фиксируется термометром. При этом к полученному отсчету температуры по шкале прибора необходимо прибавить температуру окружающей среды (в месте нахождения концов «холодного» спая), если она положительна, и отнять, если она отрицательна.

Хорошо размещать «холодные» спаи в сосуде с тающим льдом или снегом. Это дает устойчивую температуру «холодных» спаев 0°С до тех пор, пока не растает весь лед или снег, а показания милливольтметра (градуированного обычно в градусах) сразу дают температуру оболочек кабелей в градусах Цельсия без поправки на температуру окружающей среды, поскольку она равна нулю.
Концы термопар присоединяются к контактору с переключателем, к которому во время измерений присоединяются переносной милливольтметр (гальванометр).
Для измерений могут применяться также потенциометры с чувствительностью не менее 0,05 мв на деление.

б) Метод термосопротивлений

Более чувствительным методом является контроль нагрева кабелей с помощью термосопротивлений.
Термосопротивления изготовляются из тонкой изолированной проволоки диаметром 0,05-0,07 мм имеющей большой температурный коэффициент (изменение сопротивления при нагреве)
Величина термосопротивления должна быть не менее 5-10 Ом (обычно 20-30 Ом).
Несколько метров тонкой проволоки укрепляют на куске плотного листового электрокартона так, чтобы жилы проволоки были расположены на одной стороне листа (рис. 45). Выводные концы сопротивлений для большей механической прочности выполняют из более толстой изолированной проволоки.
Для того чтобы нити проволоки не расползались и не перепутывались, необходимо закрепить их на пластинке бакелитовым лаком.

Рис. 45. Намотка термосопротиилений для измерений температур на оболочках кабелей.
1 - концы для присоединения термоэлемента к мостику; 2 - переход на провод большого сечения.
Для предохранения нитей проволоки от обрыва на них следует наложить сверху кусок тонкой кабельной бумаги, также смазав ее бакелитовым лаком.
После изготовления термосопротивления листу, на котором оно закреплено, следует придать цилиндрическую форму, намотав его на стержень диаметром 40- 50 мм.
Величина омического сопротивления термоэлементов после одночасовой выдержки при неизменной температуре точно измеряется на мостике.
Так, например, если термосопротивление изготовлено из медной проволоки диаметром 0,05 мм и имеет при комнатной температуре (+20° С) сопротивление, равное 20 Ом, то при изменении температуры кабеля на 1°С изменение сопротивления составит около 0,1 Ом, что с достаточной для практики точностью может быть установлено обычными измерительными мостиками.
Иногда, исходя из местных условий, термосопротивление должно иметь очень малые размеры, например для закладки на свинцовую оболочку кабелей в просветах нижней брони ленты (верхняя бронелента разрезается). В этих случаях следует применять очень тонкую проволоку с высоким удельным сопротивлением.
В последнее время для измерения температур кабелей нашли применение полупроводниковые термосопротивления.

в) Метод термометра

В том случае, когда кабели расположены в туннеле, канале или помещениях, их температуру можно контролировать непосредственно термометрами. Шкала термометров должна быть не более 50-100° С.
Термометр в целях удобства подсоединения к кабелю должен иметь конец с ртутной головкой, изогнутой под прямым углом. Под ртутную головку термометра подкладывается мягкий станиоль, после чего термометр плотно прижимается к кабелю путем намотки и затяжки тканевой лентой.
Если желательна непрерывная или периодическая автоматическая регистрация температур нагрева кабелей, то термопары или термосопротивления должны быть подсоединены к специально установленным для этой цели электронным потенциометрам типа ЭПД-07, ЭПД-12, ЭПП 09.
При закладке термопар, термосопротивленнй пли термометров важно сохранить без изменений условия охлаждения кабелей.
В туннелях или каналах это касается вентиляции кабелей. Не допускается установка каких-либо перегородок, заполнение чем бы то ни было пространств между отдельными полками и т. д.
При траншейных прокладках кабелей, после того как заложены термопары или термосопротивления, яму засыпают и утрамбовывают тем же грунтом.
Измерение температур можно начинать не ранее чем через сутки после закрытия ямы и восстановления покровов над кабелями. Это диктуется необходимостью прогрева грунта и создания нормального теплового поля вокруг кабеля.
Концы от термопар или сопротивлений выводятся на стену какого-либо находящегося рядом помещения или размещаются и укрепляются в специально оборудованном для этой цели контрольном колодце.
В зависимости от результатов контроля увеличивается или уменьшается нагрузка кабельной линии или принимаются меры по улучшению охлаждения кабелей.

Провода и кабели, являясь проводниками, нагреваются током нагрузки. Величина допустимой температуры нагрева для изолированных проводников определяется характеристиками изоляции, для неизолированных (голых) проводов – надежностью контактных соединений. Значения длительно допустимой температуры нагрева проводов и жил кабелей при температуре окружающего воздуха + 25ºС и температуре земли или воды + 15ºС указываются в правилах устройства электроустановок (ПУЭ).

Величина тока, соответствующая длительно допустимой температуре данного провода или жилы кабеля, называется длительно допустимым током нагрузки (I доп ). Значения длительно допустимого тока для различных сечений проводов и жил кабелей, а также различных условий их прокладки, приводятся в ПУЭ и справочной литературе. Таким образом, определение сечения проводов и жил кабелей по нагреву сводится к сравнению максимального рабочего тока линии с табличным значением длительно допустимого тока нагрузки:

по которому из таблиц выбирается соответствующее стандартное сечение проводов и жил кабелей. Если температура окружающей среды отличается от табличных значений, то величина длительно допустимого тока корректируется умножением на поправочный коэффициент, значения которого принимаются по ПУЭ и справочной литературе.

Выбранное по условию нагрева сечение проводов и жил кабелей должно быть согласовано с защитой, с тем чтобы при протекании по проводнику тока, нагревающего его выше допустимой температуры, проводник был отключен защитным аппаратом (плавким предохранителем, автоматическим выключателем и т.п.).

Расчет и выбор сечений проводов и жил кабелей выполняется в следующей последовательности:

1)выбирается тип защитного аппарата – плавкий предохранитель или автоматический выключатель;

2)если выбран плавкий предохранитель, то определяется номинальный ток его плавкой вставки, который должен удовлетворять двум условиям:

где - максимальный ток нагрузки при пуске асинхронного короткозамкнутого электродвигателя (его пусковой ток);

Коэффициент, характеризующий условия работы двигателя; для нормальных условий работы = 2,5; для тяжелых условий = 1,6…2,0.

По большему расчетному значению номинального тока плавкой вставки выбирается стандартное значение номинального тока плавкой вставки предохранителя;

3)определяется длительно допустимый ток нагрузки, соответствующий выбранному номинальному току плавкой вставки предохранителя:

Для кабелей с бумажной изоляцией,

Для всех остальных кабелей и проводов;

указанные соотношения принимаются для случая, когда провода сети защищаются от перегрузок. По ПУЭ к таким сетям относятся осветительные сети в жилых и общественных зданиях, торговых и служебно-бытовых помещениях промышленных предприятий, а также в пожаро- и взрывоопасных зонах; для случаев, при которых необходимо защищать провода только от коротких замыканий, выбирается соотношение:

Полученное расчетное значение длительно допустимого тока нагрузки округляется в большую сторону до ближайшего табличного значения длительно допустимого тока нагрузки и соответствующего ему стандартного сечения проводов или жил кабеля;

4)если в качестве защитного аппарата выбран автоматический выключатель и он защищает провода сети от перегрузок, то справедливы все указанные выше соотношения, в которых вместо номинального тока плавкой вставки предохранителя надо указать номинальный ток расцепителя автоматического выключателя;