Низковольтный драйвер для мощного светодиода. Использование низкочастотных тиристоров. Расчет внешних элементов

Публикую сегодня третью статью . Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по , рекомендую ознакомиться.

Автора зовут Сергей, он живет в п. Лазаревское, города Сочи.

Статья по схемам светодиодных драйверов и их ремонту

Саша, здравствуйте.

В частности, по теме освещения - схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.

Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, — силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:


Светодиодные модули этого прожектора выглядят так:


Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:


YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):


Электрическая схема:


В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его «свита», совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или «баян» из более мелких.

Светодиоды для LED драйверов

Я не смог определиться со светодиодами. Они в обоих модулях одинаковые, хотя их производители разные. На светодиодах нет никаких надписей (с обратной стороны — тоже). Искал у разных продавцов по строке «Сверхяркие светодиоды для LED-прожекторов и LED-люстр». Там продают кучу разных светодиодов, но все они, или без линз, или с линзами на 60º, 90º и 120º .


Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность — частичная, или полная деградация кристаллов светодиодов. Думаю, причина — максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие «люстры» в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на Али, там большой выбор, например по этому запросу . Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов — не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой «болею» с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:


LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

/ Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан:611 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:


Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило — это гораздо проще и дешевле — покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан:72 раз./

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан:93 раз./

Даю несколько ссылок для ознакомления и примера, там много интересного, в том числе по описаниям, фото и выбору.

Светодиодные матрицы:

  • Led Chip большой выбор от 10 до 100 Вт, от 48 до 360 руб .
  • Мощные светодиоды .

Драйвера для светодиодных прожекторов, на разные мощности:

  • 30 Вт водонепроницаемый блок питания постоянного тока ,
  • 50 Вт водонепроницаемый блок питания постоянного тока ,
  • Водонепроницаемые уличные светодиодные драйвера 10, 20, 30, 50 Вт постоянного тока .

А кто не хочет ремонтировать, можно сразу заказать готовенькое:

Светодиодные уличные прожектора:

  • Прожектора уличные от 10 до 50 Вт ,
  • Прожектора влагозащищенные плоские от 10 до 100 Вт, можно набор LED Chip+Driver .

Особая благодарность тем, кто схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Светодиоды для своего питания требуют применения устройств, которые будут стабилизировать ток, проходящий через них. В случае индикаторных и других маломощных светодиодов можно обойтись резисторами. Их несложный расчет можно еще упростить, воспользовавшись "Калькулятором светодиодов" .

Для использования мощных светодиодов не обойтись без использования токостабилизирующих устройств – драйверов. Правильные драйвера имеют очень высокий КПД - до 90-95%. Кроме того, они обеспечивают стабильный ток и при изменении напряжения источника питания. А это может быть актуально, если светодиод питается, например, от аккумуляторов. Самые простые ограничители тока - резисторы - обеспечить это не могут по своей природе.

Немного ознакомиться с теорией линейных и импульсных стабилизаторов тока можно в статье "Драйвера для светодиодов" .

Готовый драйвер, конечно, можно купить. Но гораздо интереснее сделать его своими руками. Для этого потребуются базовые навыки чтения электрических схем и владения паяльником. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов.



Простой драйвер. Собран на макетке, питает могучий Cree MT-G2

Очень простая схема линейного драйвера для светодиода. Q1 – N-канальный полевой транзистор достаточной мощности. Подойдет, например, IRFZ48 или IRF530. Q2 – биполярный npn-транзистор. Я использовал 2N3004, можно взять любой похожий. Резистор R2 – резистор мощностью 0.5-2Вт, который будет определять силу тока драйвера. Сопротивление R2 2.2Ом обеспечивает ток в 200-300мА. Входное напряжение не должно быть очень большим – желательно не превышать 12-15В. Драйвер линейный, поэтому КПД драйвера будет определяться отношением V LED / V IN , где V LED – падение напряжения на светодиоде, а V IN – входное напряжение. Чем больше будет разница между входным напряжением и падением на светодиоде и чем больше будет ток драйвера, тем сильнее будет греться транзистор Q1 и резистор R2. Тем не менее, V IN должно быть больше V LED на, как минимум, 1-2В.

Для тестов я собрал схему на макетной плате и запитал мощный светодиод CREE MT-G2 . Напряжение источника питания - 9В, падение напряжения на светодиоде - 6В. Драйвер заработал сразу. И даже с таким небольшим током (240мА) мосфет рассеивает 0,24 * 3 = 0,72 Вт тепла, что совсем не мало.

Схема очень проста и даже в готовом устройстве может быть собрана навесным монтажом.

Схема следующего самодельного драйвера также предельно проста. Она предполагает использование микросхемы понижающего преобразователя напряжения LM317. Данная микросхема может быть использована как стабилизатор тока.



Еще более простой драйвер на микросхеме LM317

Входное напряжение может быть до 37В, оно должно быть как минимум на 3В выше падения напряжения на светодиоде. Сопротивление резистора R1 рассчитывается по формуле R1 = 1.2 / I, где I – требуемая сила тока. Ток не должен превышать 1.5А. Но при таком токе резистор R1 должен быть способен рассеять 1.5 * 1.5 * 0.8 = 1.8 Вт тепла. Микросхема LM317 также будет сильно греться и без радиатора не обойтись. Драйвер также линейный, поэтому для того, чтобы КПД был максимальным, разница V IN и V LED должна быть как можно меньше. Поскольку схема очень простая, она также может быть собрана навесным монтажом.

На той же макетной плате была собрана схема с двумя одноваттными резисторами сопротивленим 2.2 Ом. Сила тока получилась меньше расчетной, поскольку контакты в макетке не идеальны и добавляют сопротивления.

Следующий драйвер является импульсным понижающим. Собран он на микросхеме QX5241 .



Схема также проста, но состоит из чуть большего количества деталей и здесь уже без изготовления печатной платы не обойтись. Кроме того сама микросхема QX5241 выполнена в достаточно мелком корпусе SOT23-6 и требует внимания при пайке.

Входное напряжение не должно превышать 36В, максимальный ток стабилизации – 3А. Входной конденсатор С1 может быть любым – электролитическим, керамическим или танталовым. Его емкость – до 100мкФ, максимальное рабочее напряжение – не менее чем в 2 раза больше, чем входное. Конденсатор С2 керамический. Конденсатор С3 – керамический, емкость 10мкФ, напряжение – не менее чем в 2 раза больше, чем входное. Резистор R1 должен иметь мощность не менее чем 1Вт. Его сопротивление рассчитывается по формуле R1 = 0.2 / I, где I – требуемый ток драйвера. Резистор R2 - любой сопротивлением 20-100кОм. Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. И рассчитан должен быть на ток не менее требуемого тока драйвера. Один из важнейших элементов схемы – полевой транзистор Q1. Это должен быть N-канальный полевик с минимально возможным сопротивлением в открытом состоянии, безусловно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Хороший вариантполевые транзисторы SI4178, IRF7201 и др. Дроссель L1 должен иметь индуктивность 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.

Количество деталей этого драйвера совсем небольшое, все они имеют компактный размер. В итоге может получиться достаточно миниатюрный и, вместе с тем, мощный драйвер. Это импульсный драйвер, его КПД существенно выше, чем у линейных драйверов. Тем не менее, рекомендуется подбирать входное напряжение всего на 2-3В больше, чем падение напряжения на светодиодах. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть использован для диммирования – регулирования силы тока драйвера и, соответственно, яркости свечения светодиода. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.

Готовые изделия для питания мощных светодиодов можно посмотреть .



Микросхема PT4115 от компании PowTech продолжает зарабатывать положительные отзывы среди российских радиолюбителей. Малоизвестному китайскому производителю удалось вместить в компактном корпусе несколько блоков управления с мощным транзистором на выходе. Микросхема разработана для стабилизации тока и питания им светодиодов мощностью более 1 Вт. Драйвер на основе PT4115 имеет минимальную обвязку и высокий КПД. Убедиться в этом и узнать о тонкостях подбора элементов принципиальной схемы поможет данная статья.

Краткое описание микросхемы PT4115

Согласно официальной документации, LED драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:

  • диапазон рабочего входного напряжения: 6–30В;
  • регулируемый выходной ток до 1,2А;
  • погрешность стабилизации выходного тока 5%;
  • имеется защита от обрыва нагрузки;
  • имеется вывод для регулировки яркости и включения/выключения при помощи DC или ШИМ;
  • частота переключения до 1 МГЦ;
  • КПД до 97%;
  • обладает эффективным корпусом, с точки зрения рассеивания мощности.

Назначение выводов PT4115:

  1. SW. Вывод выходного переключателя (МОП-транзистора), который подключен непосредственно к его стоку.
  2. GND. Общий вывод сигнальной и питающей части схемы.
  3. DIM. Вход для задания диммирования.
  4. CSN. Вход с датчика тока.
  5. VIN. Вывод напряжения питания.

Микросхема PT4115 имеет отдельный вывод для управления включением и выключением светодиодов, а также возможностью регулировки яркости с помощью изменения уровня напряжения или ШИМ на выводе DIM.

Принципиальная схема драйвера


На рисунке представлены две принципиальные схемы драйвера для 3w светодиода на основе PT4115. Первая схема питается источником постоянного тока напряжением от 6 до 30 вольт. Вторую схему дополняет диодный мост, питается она источником переменного тока с напряжением 12-18В.

Важным элементом обоих схем является конденсатор C IN . Он непросто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия ключа (МОП-транзистора). Без C IN индуктивная энергия через диод Шоттки D поступит на вывод VIN и спровоцирует пробой микросхемы по питанию. Поэтому включение драйвера без входного конденсатора категорически запрещено.

Индуктивность L подбирается исходя из количества светодиодов и тока в нагрузке.

Согласно документации, в схеме драйвера для 3 ватного светодиода рекомендуется использовать индуктивность на 68-220 мкГн.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением номинала индуктивности в большую сторону. При этом снижается эффективность всей схемы, но схема остается работоспособной. На малых токах индуктивность должна быть больше, чтобы компенсировать пульсации, возникающие из-за задержки при переключении транзистора.

Резистор R S выполняет функцию датчика тока. В первый момент времени, при подаче входного напряжения ток через R S и L равен нулю. Затем внутрисхемный CS comparator сравнивает потенциалы до и после резистора R S и на его выходе появляется высокий уровень. Ток в нагрузке, ввиду наличия индуктивности, начинает плавно нарастать до величины, определяемой R S . Скорость увеличения тока зависит не только от величины индуктивности, но и от размера напряжения питания.

Работа драйвера основана на переключении компаратора внутри микросхемы, который постоянно сравнивает уровни напряжения на выводах IN и CSN. Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора R S с максимальным отклонением от номинала 1%.

Для включения светодиода на постоянную яркость вывод DIM остаётся не задействован, а ток на выходе определяется исключительно номиналом R S . Управление диммированием (яркостью) можно осуществляться одним из двух вариантов.

Первый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0,5 до 2,5В. При этом ток будет меняться пропорционально уровню потенциала на выводе DIM. Дальнейший рост напряжения, до 5В, не влияет на яркость и соответствует 100% току в нагрузке. Снижение потенциала ниже 0,3В приводит к отключению всей схемы. Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц.

Конструкция и детали сборки

Выбор элементов, расположенных в обвязке микросхемы PT4115, следует производить на основании рекомендаций изготовителя. В качестве C IN рекомендуется использовать конденсатор с низким ESR (эквивалентным последовательным сопротивлением). Данный параметр является вредным и негативно влияет на КПД. При питании от стабилизированного источника достаточно одного входного конденсатора ёмкостью не менее 4,7 мкФ, который должен быть размещен в непосредственной близости от микросхемы. При питании от источника переменного тока компания PowTech указывает на необходимость монтажа танталового конденсатора ёмкостью более 100 мкФ.

Типовая схема включения PT4115 для 3w светодиода подразумевает установку катушки индуктивности на 68 мкГн, располагать ее следует максимально близко к выводу SW PT4115.

Катушку индуктивности можно сделать своими руками, используя кольцо из старого компьютера и провод ПЭЛ-0,35.

К диоду D выдвигаются особые требования: малое прямое падение напряжения, малое время восстановления во время переключения и стабильность параметров при росте температуры p-n перехода, чтобы не допустить увеличения тока утечки. Этим условиям отвечает диод Шоттки FR103, способный выдерживать импульсы тока до 30А при температуре до 150°C.

Наконец, самый прецизионный элемент схемы драйвера для 3w светодиода – резистор R S . Минимальное значение R S =0,082 Ом, что соответствует току 1,2 А. Его рассчитывают, исходя из необходимого тока питания светодиода, по формуле:

R S =0,1/I LED , где I LED – номинальное значение тока светодиода, А.

В схеме включения PT4115 для 3w светодиода значение R s составляет 0,13 Ом, что соответствует току 780 мА. В магазинах не всегда можно найти резистор такого номинала. Поэтому придется вспомнить формулы расчета суммарного сопротивления при последовательном и параллельном включении резисторов:

  • R посл =R1+R2+…+R n ;
  • R пар =(R1xR2)/(R1+R2).

Таким образом, можно с высокой точностью получить нужное сопротивление из нескольких низкоомных резисторов.

В заключение хочется ещё раз подчеркнуть важность стабилизации тока, а не напряжения для обеспечения нормальной длительной работы мощных светодиодов. Известны случаи, когда в светодиодах китайского происхождения ток плавно продолжает нарастать в течение некоторого времени после включения и останавливается на значении, превышающем паспортный номинал. Это приводит к перегреву кристалла и постепенному снижению яркости. Драйвер для 3w светодиода на микросхеме PT4115 – это гарантия стабильной светоотдачи в сочетании с высоким КПД при условии эффективного отвода тепла от кристалла.

Читайте так же

Для конструирования светодиодных светильников постоянно требуются источники питания — драйвера. При большом объеме вполне можно наладить сборку драйверов самостоятельно, но себестоимость таких драйверов получается не такой уж и низкой, а изготовление и пайка двухсторонних печатных плат с SMD-компонентами — процесс в домашних условиях довольно трудоемкий.

Я решил обойтись готовым драйвером. Нужен был недорогой драйвер без корпуса, желательно с возможностью настройки тока и диммированием.

Схему перерисовал и немного доработал



Характеристики без конденсаторов ~0.9В и 8.7% (пульсации светового потока)

Конденсатор на выходе ожидаемо уменьшат пульсации вдвое ~0.4В и 4%

А вот 10мкФ конденсатор на входе уменьшает пульсации в 9 раз ~0.1В и 1%, правда добавление этого конденсатора значительно снижает PF (коэффициент мощности)

Оба конденсатора приближают характеристики выходных пульсаций к паспортным ~ 0.05В и 0.6%


Итак пульсации побеждены при помощи двух конденсаторов из старого блока питания.

Доработка №2. Настройка выходного тока драйвера

Основное предназначение драйверов — поддерживать стабильный ток на светодиодах. Данный драйвер стабильно выдает 600мА.

Иногда ток драйвера хочется изменить. Обычно это делается подбором резистора или конденсатора в цепи обратной связи. Как обстоят дела у этих драйверов? И зачем здесь установлены три параллельных резистора малого сопротивления R4, R5, R6?


Все правильно. Ими можно задавать выходной ток. Видимо, все драйверы одинаковой мощности, но на разные токи и отличаются именно этими резисторами и выходным трансформатором, дающим разное напряжение.

Если аккуратно демонтировать резистор на 1.9Ом, получаем выходной ток 430мА, демонтировав оба резистора 300мА.


Можно пойти и обратным путем, подпаяв параллельно еще один резистор, но данный драйвер выдает напряжение до 35В и при большем токе мы получим превышение по мощности, что может привести с выходу драйвера из строя. Но 700мА вполне можно выжать.

Итак, при помощи подбора резисторов R4, R5 и R6 можно уменьшать выходной ток драйвера (или очень незначительно увеличивать) не меняя количество светодиодов в цепочке.

Доработка 3. Диммирование

На плате драйвера имеется три контакта с надписью DIMM, что наводит на мысль, что данный драйвер может управлять мощностью светодиодов. О том же говорит и даташит на микросхему, хотя типовых схем диммирования в них не приведено. Из даташита можно почерпнуть информацию, что подавая на ногу 7 микросхемы напряжение -0.3 — 6В, можно получить плавное регулирование мощности.

Подключение к контактам DIMM переменного резистора ни к чему не приводит, кроме того, нога 7 микросхемы драйвера вообще ни к чему не подключена. Значит снова доработки.

Подпаиваем резистор на 100К к ноге 7 микросхемы


Теперь подавая между землей и резистором напряжение 0-5В получаем ток 60-600мА



Чтобы уменьшить минимальный ток диммирования, необходимо уменьшить и резистор. К сожалению, в даташите про это ничего не написано, поэтому подбирать все компоненты придется опытны путем. Меня лично устроило диммирования от 60 до 600мА.

Если нужно организовать диммирование без внешнего питания, то можно взять напряжение питания драйвера ~15В (нога 2 микросхемы или резистор R7) и подать по следующей схеме.


Ну и, напоследок, подаю ШИМ с D3 ардуино на диммирующий вход.


Пишу простейший скетч, меняющий уровень ШИМ от 0 до максимуму и обратно:

#include

void setup() {
pinMode(3, OUTPUT);
Serial.begin(9600);
analogWrite(3,0);
}

void loop() {
for(int i=0; i< 255; i+=10){
analogWrite(3,i);
delay(500);
}
for(int i=255; i>=0; i-=10){
analogWrite(3,i);
delay(500);
}
}

Получаю диммирование при помощи ШИМ.

Диммирование при помощи ШИМ увеличивает выходные пульсации примерно на 10-20% по сравнению с управлением постоянным током. Максимально пульсации увеличиваются примерно вдвое при установке тока драйвера в половину от максимального.

Проверка драйвера на КЗ

Токовый драйвер должен корректно реагировать на короткое замыкание. Но лучше китайцев проверить. Не люблю я такие штуки. Под напряжением что-то втыкать. Но искусство требует жертв. Закорачиваем выход драйвера во время работы:

Драйвер нормально переносит короткие замыкания и восстанавливает свою работу. Защита от КЗ есть.

Подведем итоги

Плюсы драйвера

  • Малые габариты
  • Низкая стоимость
  • Возможность регулировки тока
  • Возможность диммирования

Минусы

  • Высокие выходные пульсации (устраняется добавлением конденсаторов)
  • Вход диммирования нужно распаивать
  • Мало нормальной документации. Неполный даташит
  • При работе обнаружился еще один минус — помехи на радио в ФМ диапазоне. Лечится установкой драйвера в алюминиевый корпус или корпус обклеенный фольгой или алюминиевым скотчем

LED - Light Emitting Diode - светоизлучающий диод - миниатюрная лампочка, свечение в которой происходит за счет движения электронов сквозь полупроводниковые слои в устройстве. Свечение происходит при потреблении светодиодом определенного количества электроэнергии. В качестве рабочего тела в светодиоде не применяются ни газы, ни нити накаливания, благодаря этому, светодиоды долговечны, надежны, эффективны и не выделяют большого количества тепла.

Каков срок службы светодиода?

Светодиоды не перегорают, как лампы накаливания, поэтому отдельно взятые светодиоды редко приходится заменять. Однако, светодиод со временем как бы тускнеет, выдавая более низкую светимость. Светодиоды от добросовестных производителей имеют средний номинальный срок службы 50000 часов, что многократно превышает срок службы ламп накаливания либо люминесцентных источников света.

Являются ли светодиоды экономически эффективными?

Светодиоды привнесли ряд преимуществ в индустрию освещения. Это и высокая эффективность, прочность и долговечность. По всем этим параметрам традиционные источники света далеко позади. Преимущества светодиодов позволяют экономить до 80% электроэнергии и снижают стоимость обслуживания. Не смотря на большую стоимость светодиодных ламп, окупаются они гарантированно и в короткий срок.

Для чего нужен блок питания?

Светодиоды, как правило, работают на низком постоянном напряжении и поэтому требуют использования блоков питания, для преобразования переменного напряжения бытовой сети 220 Вольт в постоянное напряжение 5-24 Вольт. Блок питания предназначен для стабилизации, выпрямления и сглаживания выходного напряжения.

Можно ли диммировать (менять яркость) светодиоды?

Да, светодиоды легко диммировать, более того, это может способствовать увеличению их срока службы. Специальные светодиодные драйверы очень просто и точно помогут выставить необходимую степень затемнения.

Насколько быстро включается светодиод?

Светодиоды достигают максимальной яркости мгновенно, и это не зависит от окружающей температуры.

Могут ли светодиоды выйти из строя при неправильном подключении к блоку питания?

Да, могут. Светодиоды сконструированы так, что ток может свободно проходить сквозь них только в одном направлении, и ток этот должен строго соответствовать расчетным значениям для каждого светодиода. Например, если светодиод, рассчитанный на малое постоянно напряжение, подключить напрямую к бытовой сети переменного напряжения 220V, то светодиод попросту сгорит из-за многократного превышения мощностных значений.
Если светодиодное устройство подключить к блоку питания меньшего напряжения, чем то, которое требуется, то свечение устройства будет в лучшем случае тусклым. Если же выходное напряжение блока питания будет превышать расчетное значение, то срок службы подключенного устройства будет очень коротким.

В чем разница между продукцией различных производителей светодиодов?

Технология производства светодиодных чипов достаточно сложна и многогранна, что подразумевает нетривиальность подходов к производству чипов. Каждый производитель обычно идет своим путем производства, руководствуясь своими возможностями, приоритетами, задачами, принципами и доступными технологиями. Благодаря этому, рынок заполнен множеством различных видов светодиодов с различными характеристиками и свойствами. Очень важно при выборе светодиодной продукции понимать, можно ли доверять конкретному производителю или лучше немного переплатить, но получить действительно надежную и качественную продукцию.

Что такое LED-драйверы постоянного тока (СС)?

LED-драйверы постоянного тока предназначены для того, чтобы во время работы подключенной светодиодной техники обеспечивалось стабильное питание постоянным значением электрического тока. Драйвер балансирует значение величины тока по каждому имеющемуся выходному каналу, для того чтобы обеспечивать снижение электромагнитных помех и поддерживать длительный срок службы светодиодов. Важным свойством драйвера, является то, что подключаемые к нему различные светодиодные светильники будут светиться одинаково ярко, именно за счет фиксированного значения выделяемого тока. Особенно важно то, что устройства, включенные в цепь с драйвером постоянного тока, должны подключаться друг к другу последовательно.

Что такое LED-драйверы постоянного напряжения (CV)?

Данные LED-драйверы предназначены для поддержания постоянного напряжения во время работы подключенной светодиодной техники независимо от количества включенных элементов. Драйвер постоянного напряжения идеально подходит для питания параллельных светодиодных осветительных массивов. В его конструкцию входит специальный резистор для контроля величины электрического тока, благодаря ему и происходит конвертация переменного тока в требуемое напряжение тока постоянного. Главное, чтобы устройства к драйверу были подключены параллельно!

В чем принципиальная разница между драйверами постоянного тока и постоянного напряжения?

Драйверы постоянного напряжения по мере увеличения нагрузки (подключения новых светодиодных элементов) увеличивают до определенного предела электрический ток, напряжение при этом остается фиксированным. С драйверами постоянного тока все наоборот. По мере подключения потребителей возрастает напряжение, при остающемся неизменным токе. Следует помнить, что при постоянном напряжении устройства должны подключаться параллельно друг к другу, при постоянном токе - последовательно.

Как узнать, какой драйвер следует использовать в каждом конкретном случае?

Обычно, добросовестные производители светодиодного оборудования указывают, предназначено ли это устройство для работы при постоянном токе или постоянном напряжении. Если устройство предназначено для работы при постоянном напряжении, вы не можете подключать его в сеть с постоянным током, не повреждая его. То же самое верно и в обратном случае. Также, определить режим работы можно по техническим характеристикам устройства. Если указано, что светодиодный модуль рассчитан в миллиамперах, то подключение - постоянный ток, если расчет указан в вольтах, то подключение - постоянное напряжение.

Что такое LED-диммеры?

Диммеры - это специальные устройства для управления яркостью свечения светодиодной техники. Существуют много различных видов диммеров, предназначенных для применения в разных условиях и для управления различными видами светодиодной продукции. Управление может осуществляться в ручную, непосредственно с самого устройства, с помощью пульта дистанционного управления, либо программным способом. При выборе диммера следует обращать внимание на специфику его применения и соответствие с подключаемой к нему светотехникой.

Насколько может быть удалено светодиодное устройство от блока питания?

Важно понимать, что с увеличением длины проводов, соединяющих блок питания с подключенным устройством, растет и падение напряжения на этом протяженном участке. Падение напряжения приводит к тому, что светодиоды светятся менее ярко. Зависимость простая, чем длиннее соединительные провода, тем тусклее светятся светодиоды. Конкретные цифры привести невозможно, так как для разного рода светотехники они будут различны. Просто, нужно стремиться к тому, чтобы блок питания был максимально близок (в разумных пределах) к подключенному устройству. К слову, в каком-то роде, решить эту проблему может использование драйвера постоянного тока, который при увеличении дистанции, будет пропорционально увеличивать выходное напряжение.