Электронный ключ на транзисторе - принцип работы и схема.

Транзистор в режиме ключа? Какого еще ключа? Такого?

А может быть такого?

Ключ от сундучка более-менее похож на правду, так как запирает и отпирает сундучок, но все равно далек от истины.

Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и... пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.



Нажали на черную большую пипочку - ток побежал, отжали - получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение;-) Нажали на пипку - сигнал есть, отжали пипку - сигнала нет.

Ключ, собранный на транзисторе, называется транзисторным ключом . Транзисторный ключ выполняет только две операции: вКЛЮЧ ено и выКЛЮЧ ено, промежуточный режим между "включено" и "выключено" мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:



Знакомая схемка не так ли? Здесь все элементарно и просто;-) Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2 --->лампочка--->коллектор--->эмиттер--->к минусовой клемме Bat2 . Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор "R " здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.

Но все ли так просто, как кажется на первый взгляд?

Итак, давайте вспомним, какие требования должны быть, чтобы полностью "открыть" транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

Транзисторный ключ является основным элементом устройств цифровой электроники и очень многих устройств силовой электроники. Параметры и характеристики транзисторного ключа в очень большой степени определяют свойства соответствующих схем.

Ключи на биполярных транзисторах . Простейший ключ на биполярном транзисторе, включенный по схеме с общим эмиттером, и соответствующая временная диаграмма входного напряжения представлены на рис. 14.5.

Рис. 14.5. Ключ на биполярном транзисторе

Рассмотрим работу транзисторного ключа в установившихся режимах. До момента времени t 1 эмиттерный переход транзистора заперт и транзистор находится в режиме отсечки. В этом режимеi к =i б =I ко (I ко – обратный ток коллектора),i э ≈ 0. При этомu R б u R к ≈ 0;u бэ ≈ –U 2 ;u кэ –Е к .

В промежутке времени t 1 t 2 транзистор открыт. Для того, чтобы напряжение на транзистореu кэ было минимальным, напряжениеU 1 обычно выбирают так, чтобы транзистор находится или в режиме насыщения, или в пограничном режиме, очень близким к режиму насыщения.

Ключи на полевых транзисторах отличаются малым остаточным напряжением. Они могут коммутировать слабые сигналы (в единицы микровольт и меньше). Это следствие того, что выходные характеристики полевых транзисторов проходят через начало координат.

Для примера изобразим выходные характеристики транзистора с управляющим переходом и каналом p -типа в области, прилегающей к началу координат (рис. 14.6).

Рис. 14.6. Полевой транзистор с каналом p-типа

Обратим внимание, что характеристики в третьем квадранте соответствуют заданным напряжениям между затвором и стоком.

В статическом состоянии ключ на полевом транзисторе потребляет очень малый ток управления. Однако этот ток увеличивается при увеличении частоты переключения. Очень большое входное сопротивление ключей на полевых транзисторах фактически обеспечивает гальваническую развязку входных и выходных цепей. Это позволяет обойтись без трансформаторов в цепях управления.

На рис. 14.7 приведена схема цифрового ключа на МДП-транзисторе с индуцированным каналом n -типа и резистивной нагрузкой и соответствующие временные диаграммы.


Рис. 14.7. Цифровой ключ на полевом транзисторе

На схеме изображена емкость нагрузки С н , моделирующая емкость устройств, подключенных к транзисторному ключу. Очевидно, что при нулевом входном сигнале транзистор заперт иu си =Е с . Если напряжениеuвх больше порогового напряженияU зи.порог транзистора, то он открывается и напряжениеu си уменьшается.

Логические элементы

Логический элемент (логический вентиль) – это электронная схема, выполняющая некоторую простейшую логическую операцию. На рис. 14.8 приведены примеры условных графических обозначений некоторых логических элементов.

Рис. 14.8. Логические элементы

Логический элемент может быть реализован в виде отдельной интегральной схемы. Часто интегральная схема содержит несколько логических элементов.

Логические элементы используются в устройствах цифровой электроники (логических устройствах) для выполнения простого преобразования логических сигналов.

Классификация логических элементов. Выделяются следующие классы логических элементов (так называемые логики):

    резисторно-транзисторная логика (ТРЛ);

    диодно-транзисторная логика (ДТЛ);

    транзисторно-транзисторная логика (ТТЛ);

    эмиттерно-транзисторная логика (ЭСЛ);

    транзисторно-транзисторная логика с диодами Шоттки (ТТЛШ);

    р (р -МДП);

    логика на основе МОП-транзисторов с каналами типа n (n -МДП);

    логика на основе комплементарных ключей на МДП-транзисторах (КМДП, КМОП);

    интегральная инжекционная логика И 2 Л;

    логика на основе полупроводника из арсенида галлия GaAs.

В настоящее время наиболее широко используются следующие логики: ТТЛ, ТТЛШ, КМОП, ЭСЛ. Логические элементы и другие цифровые электронные устройства выпускаются в составе серий микросхем: ТТЛ – К155, КМ155, К133, КМ133; ТТЛШ – 530, КР531, КМ531, КР1531, 533, К555, Км555, 1533, КР1533; ЭСЛ – 100, К500, К1500; КМОП – 564, К561, 1564, КР1554; GaAs– К6500.

Наиболее важные параметры логических элементов:

    Быстродействие характеризуется временем задержки распространения сигнала t зр и максимальной рабочей частотойF макс . Время задержки принято определять по перепадам уровней 0,5U вх и 0,5ΔU вых . Максимальная рабочая частотаF макс – это частота, при которой сохраняется работоспособность схемы.

    Нагрузочная способность характеризуется коэффициентом объединения по входу К об (иногда используют термин «коэффициент объединения по выходу»). ВеличинаК об – это число логических входов, величинаК раз – максимальное число однотипных логических элементов, которые могут быть подключены к выходу данного логического элемента. Типичные значения их таковы:К об =2…8,К раз =4…10. Для элементов с повышенной нагрузочной способностьюК раз =20…30.

    Помехоустойчивость в статическом режиме характеризуется напряжением U пст , которое называется статической помехоустойчивостью. Это такое максимально допустимое напряжение статической помехи на входе, при котором еще не происходит изменение выходных уровней логического элемента.

    Мощность, потребляемая микросхемой от источника питания. Если эта мощность различна для двух логических состояний, то часто указывают среднюю потребляемую мощность для этих состояний.

    Напряжение питания.

    Входные пороговые напряжения высокого и низкого уровня U вх.1порог иU вх.0порог , соответствующие изменению состояния логического элемента.

    Выходные напряжения высокого и низкого уровней U вых1 иU вых0 .

Используются и другие параметры.

Особенности логических элементов различных логик. Для конкретной серии микросхем характерно использование типового электронного узла – базового логического элемента. Этот элемент является основой построения самых разнообразных цифровых электронных устройств.

    Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. 14.9).


Рис. 14.9. Базовый элемент ТТЛ

Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмитттерный транзистор находится в состоянии насыщения и транзистор Т 2 закрыт, а следовательно, закрыт и транзистор Т 4 , т. е. на выходе будет высокий уровень напряжения. Если на обоих входах одновременно действует высокий уровень напряжения, то транзистор Т 2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т 4 и запиранию транзистора Т 3 , т.е. реализуется функция И-НЕ. Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами или транзисторами Шоттки.

    Базовый логический элемент ТТЛШ (на примере серии К555). В качестве базового элемента серии микросхем К555 использован элемент

И-НЕ (рис. 14.10,а ), а на рис. 14.10,б показано графическое изображение транзистора Шоттки.


Рис. 14.10. Логический элемент ТТЛШ

Транзистор VT4 – обычный биполярный транзистор. Если оба входных напряженияu вх1 иu вх2 имеют высокий уровень, то диодыVD3 иVD4 закрыты, транзисторыVT1,VT5 открыты и на выходе имеет место напряжение низкого уровня. Если хотя бы на одном входе имеется напряжение низкого уровня, то транзисторыVT1 иVT5 закрыты, а транзисторыVT3 иVT4 открыты, и на входе имеет место напряжение низкого уровня. Микросхемы ТТЛШ серии К555 характеризуются следующими параметрами:

    напряжение питания +5 В ;

    выходное напряжение низкого уровня не более 0,4 В ;

    выходное напряжение высокого уровня не менее 2,5 В ;

    помехоустойчивость – не менее 0,3 В;

    среднее время задержки распространения сигнала 20 нс ;

    максимальная рабочая частота 25 МГц .

Особенности других логик. Основой базового логического элемента ЭСЛ является токовый ключ, схема которого подобна схеме дифференциального усилителя. Микросхема ЭСЛ питается отрицательным напряжением (–4В для серии К1500). Транзисторы этой микросхемы не входят в режим насыщения, что является одной из причин высокого быстродействия элементов ЭСЛ.

В микросхемах n -МОП иp -МОП используются ключи соответственно на МОП-транзисторах сn -каналами и динамической нагрузкой и на МОП-транзисторах сp -каналом. Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП-логические элементы (КМДП или КМОП-логика).

Логика на основе полупроводника из арсенида галлия GaAsхарактеризуется наиболее высоким быстродействием, что является следствием высокой подвижности электронов (в 3…6 раз больше по сравнению с кремнием). Микросхемы на основеGaAsмогут работать на частотах порядка 10ГГц .

Транзисторный ключ являются основным компонентом в импульсной преобразовательной технике. В схемах всех импульсных источников питания, которые практически полностью вытеснили трансформаторные источники питания, применяются транзисторные ключи. Примером таких источников питания являются компьютерные блоки питания, зарядные устройства телефонов, ноутбуков, планшетов и т. п. Транзисторные ключи пришли на смену электромагнитных реле, поскольку обладают таким основным преимуществом как отсутствие механических подвижных частей в результате чего увеличивается надежность и долговечность ключа. Кроме того скорость включения и выключения электронных полупроводниковых ключей значительно выше скорости электромагнитных реле.

Также транзисторный ключ часто используется для включения-выключения (коммутации) нагрузки значительной мощности по сигналу микроконтроллера.

Суть электронного ключа заключается в управлении им большой мощностью по сигналу малой мощности.

Существуют полупроводниковые ключи на базе транзисторов, тиристоров, симисторов. Однако в данной статье рассмотрена работа электронного ключа на биполярном транзисторе. В последующих статьях будут рассмотрены и другие типы полупроводниковых ключей.

В зависимости от полупроводниковой структуры биполярные транзисторы разделяют на два вида: p n p и n p n типа (рис. 1 ).

Рис. 1 – Структуры биполярных транзисторов

В схемах биполярные транзисторы обозначаются, как показано на рис. 2 . Средний вывод называется базой, вывод со “стрелочкой” – эмиттер, оставшийся вывод – коллектор.


Рис. 2 – Обозначение транзисторов в схемах

Также транзисторы условно можно изобразить в виде двух диодов, которые включены встречно, место соединения их всегда будет базой (рис.3 ).

Рис. 3 – Схемы замещения транзисторов диодами

Транзисторный ключ. Схемы включения.

Схемы включения транзисторов разных полупроводниковых структур показаны на рис. 4 . Переход между базой и эмиттером называется эмиттерный переход, а переход между базой и коллектором – коллекторный переход. Для включения (открытия) транзистора необходимо чтобы коллекторный переход был смещен в обратном направлении, а эмиттер – в прямом.


Рис. 4 – Транзисторный ключ. Схемы включения

Напряжение источника питания U ип прикладывается к выводам коллектора и эмиттера U кэ через нагрузочный резистор R к (см. рис. 4 ). Напряжение управления (управляющий сигнал) подается между базой и эмиттером U бэ через токоограничивающий резистор R б .

Когда транзистор работает в ключевом режиме он может находиться в двух состояниях. Первое – это режим отсечки. В это режиме транзистор полностью закрыт, а напряжение между коллектором и эмиттером равно напряжению источника питания. Второе состояние – это режим насыщения. В этом режиме транзистор полностью открыт, а напряжение между коллектором и эмиттером равно падению напряжения на p n – переходах и для различных транзисторов находится в пределах от сотых до десятых вольта.

На нагрузочной прямой входной статической характеристики транзистора (рис. 5 ) область насыщения находится на отрезке 1-2 , а область отсечки на отрезке 3-4 . Промежуточная область между этими отрезками – область 2-3 называется активной областью. Ею руководствуются когда транзистор работает в режиме усилителя.


Рис. 5 – Входная статическая характеристика транзистора

Для того, чтобы проще запомнить полярность подключения источника питания и напряжения сигнала управления следует обратить внимание на стрелку эмиттера. Она указывает направление протекания тока (рис.6 ).


Рис. 6 – Путь протекания тока через транзисторный ключ

Расчет параметров транзисторного ключа

Для примера работы ключа в качестве нагрузки будем использовать светодиод. Схема его подключения показана на рис. 7 . Обратите внимание на полярность подключения источников питания и светодиода в транзисторах разных полупроводниковых структур.


Рис. 7 – Схемы подключения светодиода к транзисторным ключам

Рассчитаем основные параметры транзисторного ключа, выполненного на транзисторе n p n типа. Пусть имеем следующие исходные данные:

— падение напряжения на светодиоде Δ U VD = 2 В ;

номинальный ток светодиода I VD = 10 мА ;

— напряжение источника питания U ип (на схеме обозначено Uкэ) = 9 В ;

— напряжение входного сигнала U вс = 1,6 В .

Теперь взглянем еще раз на схему, показанную на рис. 7 . Как мы видим, осталось определить сопротивления резисторов в цепи базы и коллектора. Транзистор можно выбрать любой биполярный соответствующей полупроводниковой структуры. Возьмем для примера советский транзистор n p n типа МП111Б .

Расчет сопротивления в цепи коллектора транзистора

Сопротивление в цепи коллектора предназначено для ограничения тока, который протекает через светодиод VD , а также для защиты от перегрузки самого транзистора. Поскольку, когда транзистор откроется, ток в его цепи будет ограничиваться только сопротивлением светодиода VD и резистора R к .

Определим сопротивление R к . Оно равно падению напряжения на нем Δ U R к деленному на ток в цепи коллектора I к :


Так коллектора нами задан изначально, – это номинальный ток светодиода. Он не должен превышать I к=10мА .

Теперь найдем падение напряжения на резисторе R к . Оно равно напряжению источник питания U ип (U кэ ) минус падение напряжения на светодиоде Δ U VD и минус падение напряжения на транзисторе ΔU кэ :

Падение напряжение на светодиоде, как и напряжение источника питания изначально заданы и равны 0,2В и 9В соответственно. Падение напряжения для транзистора МП111Б, как и для других советских транзисторов, принимаем равным порядка 0,2 В. Для современный транзисторов (например BC547, BC549, N2222 и других) падение напряжение составляет порядка 0,05 В и ниже.

Падение напряжения на транзисторе можно измерить, когда он полностью открыт, между выводами коллектора и эмиттера и в дальнейшем скорректировать расчет. Но, как мы увидим дальше, сопротивление коллектора можно подобрать более простым методом.

Сопротивление в цепи коллектора равно:

Расчет сопротивления в цепи базы транзистора

Теперь нам осталось определить сопротивление базы R б . Оно равно падению напряжения на самом сопротивлении ΔURб деленному на ток базы I б :


Падение напряжения на базе транзистора равно напряжению входного сигнала Uвс минус падение напряжения на переходе база-эмиттер ΔUбэ . Напряжение входного сигнала задано в исходных данных и равно 1,6 В. Падение напряжения между базой и эмиттером равно порядка 0,6 В.

Далее найдем ток базы . Он равен току коллектора деленному на коэффициент усиления транзистора по току β . Коэффициент усиления для каждого транзистора приводится в даташитах или в справочниках. Еще проще узнать значение β можно воспользовавшись мультиметром. Даже самый простой мультиметр имеет такую функцию. Для данного транзистора β=30 . У современных транзисторов β равен порядка 300…600 единиц.

Теперь мы можем найти необходимое сопротивление базы.

Таким образом, воспользовавшись выше изложенной методикой, можно легко определить необходимые номиналы резисторов в цепи базы и коллектора. Однако нужно помнить, что расчетные данные не всегда позволяют точно определить номиналы резисторов. Поэтому более тонкую настройку ключа лучше выполнять опытный путем, а расчеты необходимы лишь для первичной прикидкы, то есть помогают сузить диапазон выбора номиналов резисторов.

Чтобы определить номиналы резисторов нужно последовательно с резисторами базы и коллектора включить переменный резистор и изменяя его величину получить необходимые значения токов базы и коллектора (рис. 8 ).


Рис. 8 – Схема включения переменных резисторов

Рекомендации по выбору транзисторов для электронных ключей

    Номинальное напряжение между коллектором и эмиттером, которое указывается производителем, должно быть выше напряжения источника питания.

    Номинальный ток коллектора, который также указывается производителем, должен быть больше тока нагрузки.

    Необходимо следить за тем, чтобы ток и напряжение базы транзистора не превышали допустимых значений.

  1. Также напряжение на базе в режиме насыщения не должно быть ниже минимально значения, иначе транзисторный ключ будет работать нестабильно.

В настоящее время наметилась вполне определенная тенденция к отказу от чисто аналоговых схем и переходу к цифровым с широким применением микропроцессорной техники. Цифровая обработка сигналов дает широкие преимущества в смысле гибкости решений, технологичности конструкций, экономии энергопотребления. В схемотехническом плане в основе цифровой техники, а также значительного количества так называемых импульсных устройств лежат электронные ключи.

Технические реализации цифровых схем, в которых сигналы представлены дискретно квантованными уровнями напряжения (тока), основаны на использовании электронных коммутаторов напряжения (тока), называемых электронными ключами. В качестве нелинейных приборов с управляемым сопротивлением в электронных ключах используются полупроводниковые диоды, биполярные и полевые транзисторы, фототранзисторы, тиристоры, оптроны, электронные лампы.

Аналогично механическим ключам (рубильникам), естественно характеризовать электронный ключ сопротивлением в открытом и закрытом состоянии, предельными значениями коммутируемого тока и напряжения, временными параметрами, описывающими скорость переключения из одного состояния в другое. Следует отметить, что электронные ключи, в отличие от механических, чаще всего не являются двунаправленными, т.е. коммутируют ток и напряжение одного знака.

Следует различать аналоговые электронные ключи , предназначенные для передачи аналогового сигнала с минимальными искажениями, и цифровые ключи , обеспечивающие формирование бинарных сигналов. Аналоговые ключи лежат в основе всевозможных коммутаторов сигналов, нашедших широкое применение в технике аналого-цифрового преобразования. Несмотря на сходство в функциональном плане между цифровыми и аналоговыми ключами, требования к последним существенно отличаются от требований к цифровым ключам, что приводит совершенно к другим соображениям, по которым следует разрабатывать аналоговые ключи.

По типу электронные ключи можно разделить на:

  • функциональные, осуществляющие преобразование входной логической переменной в выходную логическую переменную. Преобразование может вестись с затуханием – функциональный пассивный элемент (рис. а) и с усилением, когда выходная логическая переменная y черпает энергию от z. z – функциональный активный элемент (рис. б);
  • логические, осуществляющие преобразование (сравнение) нескольких входных логических переменных в одну, являющуюся функцией этих входных логических (рис. в).

Диодные ключи.

В диодных ключах используется зависимость сопротивления диода от величины и знака приложенного напряжения.

Известно, что ток диода определяется выражением: , где 26 мВ при 298К - температурный потенциал, m - коэффициент, учитывающий влияние поверхностных токов утечки германиевых, и генерации-рекомбинации в p-n переходах кремниевых диодов (- 1.2...1.5, - 1.2...2). Тепловой ток диода практически не зависит от приложенного к диоду напряжения и определяется электрофизическими свойствами полупроводника и температурой его нагрева , где - константа, определяемая материалом полупроводника и концентрациями примесей, - контактная разность потенциалов. С учетом активного сопротивления р и n областей активное сопротивление диода равно:

При достаточно больших напряжениях (единицы-десятки ом), при обратно смещенном переходе (десятки-сотни кОм).

Эквивалентная схема диода представлена на рис.1. Инерционность ключа определяется процессами накопления неосновных носителей в области p-n перехода, емкостью p-n перехода, емкостью между выводами и индуктивностью выводов. Основным справочным параметром, определяющим быстродействие диода, является время восстановления обратного сопротивления.


r уm - сопротивление утечки;

С 0 - емкость между выводами диода;

L - индуктивность выводов;

С Д - диффузионная емкость p-n перехода при прямом смещении;

С Б - барьерная емкость p-n перехода при обратном смещении

Рис.1 Эквивалентная схема диода

На основе диодных ключей можно строить различные логические элементы (рис.2).


Рисунок 2 - Пример логических схем на основе диодных ключей

Электронные ключи на основе диодов являются пассивными структурами, что приводит к ослаблению сигнала при прохождении таких ключей, что особенно заметно при построении многоступенчатых структур.

Инерционность диодных ключей обусловлена накоплением неосновных носителей в области p-n перехода, емкостью p-n перехода, емкостью и индуктивностью выводов. Кроме перечисленных параметров, имеют значение также индуктивность и емкость нагрузки, а также монтажные емкости. В справочниках на дискретные диоды чаще всего указывается время обратного восстановления (восстановления обратного сопротивления), обусловленное диффузионным движением неосновных носителей. Для уменьшения этого времени могут использоваться создание ловушек, способствующих рекомбинации неосновных носителей или создание неоднородной концентрации примесей (диоды с накоплением заряда). Диодные ключи чаще всего используются в качестве вспомогательных узлов в цифровой и аналоговой технике.

Электронные ключи на биполярных транзисторах.

Чаще всего используются ключи, собранные по схеме с общим эмиттером, как показано на рис. 3.

В ключевом режиме биполярный транзистор работает в режиме насыщения (замкнутый ключ) или режиме отсечки (разомкнутый ключ). Полезно помнить, что в режиме насыщения оба перехода (коллектор-база и эмиттер-база) открыты, а в режиме отсечки - заперты. В режиме насыщения выходную цепь транзистора можно представить эквивалентным источником напряжения, величина ЭДС которого приводится в справочниках (Uкэнас - напряжение насыщения). Строго говоря, следует учитывать также внутреннее сопротивление этого источника, величина которого определяется крутизной наклона линии граничного режима, однако, в большинстве практически важных случаев для инженерных расчетов можно ограничиться величиной - Uкэнас . Резисторы и должны обеспечивать надежное запирание транзистора при низком уровне управляющего сигнала во всем диапазоне рабочих температур и насыщение при высоком уровне управляющего сигнала.


Рисунок 3 - Схема электронного ключа на биполярном транзисторе

При расчете необходимо учитывать обратный ток коллектора, протекающий через резистор , и создающий на нем падение напряжения. Суммарное напряжение на эмиттерном переходе определяется выражением:

где - максимальный обратный ток коллектора, Uo - напряжение низкого уровня управляющего сигнала. Очевидно, для надежного запирания транзистора необходимо, чтобы Uбэ< Uбэотс . Необходимо учитывать сильную температурную зависимость обратного тока коллектора, и для расчета выбирать максимальное значение. В противном случае ключ может "подтекать" при изменении температуры.

Открытый транзистор может находиться в активном режиме или режиме насыщения. Для электронных ключей активный режим является невыгодным, так как в этом режиме на коллекторе рассеивается значительная мощность. Поэтому активный режим допустим только в течение переходных процессов (где он, собственно говоря, неизбежен).

Для обеспечения насыщения необходимо, чтобы выполнялось соотношение . Ток базы можно определить по формуле: . Ток насыщения определяется сопротивлением резистора в цепи коллектора, усилительными свойствами транзистора и сопротивлением между коллектором и эмиттером в насыщенном состоянии: . При расчетах целесообразно пользоваться наихудшим значением . Отметим, что при нарушении условия насыщения транзистор переходит в активный режим, что сопровождается ростом напряжения на коллекторе и увеличением мощности рассеяния. В ряде случаев используют иной критерий насыщения - прямое смещение обоих переходов транзистора (база-эмиттер и база-коллектор). В активном режиме переход база-коллектор смещен в обратном направлении.

Используя этот критерий, легко понять, что составной транзистор (по схеме Дарлингтона) не удастся полностью насытить, так как база выходного транзистора в лучшем случае может иметь потенциал, равный потенциалу коллектора.

Необходимой частью проектирования электронных ключей является оценка их динамических свойств, определяющих скорость переключения и потери энергии на этом этапе (динамические потери).

Переходные процессы в электронном ключе на биполярном транзисторе характеризуются длительностью цикла переключения, который можно разделить на несколько отдельных этапов:

Задержка включения;

Включение (нарастание тока до величины, соответствующей насыщению);

Задержка выключения (обусловлена рассасыванием заряда в базе при переходе из режима насыщения в активный режим);

Выключение (обусловлено уменьшением тока коллектора до значения, соответствующего отсечке).

Необходимо также учитывать процессы заряда емкостей монтажа и нагрузки, которые не имеют прямого отношения к транзистору, но могут существенно влиять на длительность переходного процесса в целом.

Рассмотрим характерные участки переходного процесса по временным диаграммам (рис.4).


Рисунок 4 - Переходные процессы в ключе на биполярном транзисторе

  1. Транзистор заперт, ток базы определяется обратным током коллектора, заряд в базе практически отсутствует, на выходе ключа высокий уровень.
  2. Потенциал на входе ключа скачком увеличивается, начинается заряд входной емкости. Токи базы и коллектора не изменяются, пока напряжение на переходе база-эмиттер не превышает напряжения отсечки (время задержки включения).
  3. В момент превышения напряжения отсечки открывается эмиттерный переход, и транзистор переходит в активный режим. Инжектируемые в базу неосновные носители нарушают равновесное состояние базы, и начинается накопление заряда. Пропорционально увеличивается ток коллектора, обусловленный экстракцией носителей в область коллектора. Время до перехода в режим насыщения - время включения.
  4. В режиме насыщения все токи и напряжения остаются постоянными, при этом заряд в базе продолжает нарастать, хотя и с меньшей скоростью. Заряд, превышающий величину, соответствующую переходу в режим насыщения, называется избыточным.
  5. При скачкообразном изменении потенциала на входе ключа ток базы также быстро уменьшается, нарушается равновесное состояние заряда базы и начинается его рассасывание. Транзистор остается насыщенным до тех пор, пока заряд не уменьшится до граничной величины, после чего переходит в активный режим (время задержки выключения).
  6. В активном режиме заряд базы и ток коллектора уменьшаются до тех пор, пока транзистор не перейдет в режим отсечки. В этот момент входное сопротивление ключа возрастает. Этот этап определяет время выключения.
  7. После перехода транзистора в режим отсечки напряжение на выходе продолжает нарастать, так как заряжаются емкости нагрузки, монтажа и емкость коллектора.

Очевидно, ключевую роль играет степень (глубина) насыщения транзистора .

Для количественной оценки коммутационных параметров можно воспользоваться следующими выражениями:

Существуют схемотехнические методы повышения быстродействия ключа: форсирующая цепочка (рис. 5а) и нелинейная обратная связь (рис. 5б).


а) Ключ с форсирующей цепочкой


б) Ключ с нелинейной обратной связью

Рисунок 5 - схемотехнические приемы повышения быстродействия

Принцип работы форсирующей цепочки очевиден: при отпирании транзистора ток базы определяется процессом заряда форсирующей емкости (быстрый переход в режим насыщения), в открытом состоянии ток базы определяется резистором, величина которого выбирается таким образом, чтобы обеспечить неглубокое насыщение транзистора. Таким образом, уменьшается время рассасывания неосновных носителей в базе.

При использовании нелинейной обратной связи применяется диод, включенный между базой и коллектором транзистора. Запертый диод не влияет на работу схемы, когда ключ открывается, диод оказывается смещенным в прямом направлении, а транзистор охваченным глубокой отрицательной обратной связью. Для уменьшения времени выключения необходимо обеспечить малое время восстановления обратного сопротивления диода, для чего применяются диоды с барьером Шотки. Монолитная структура диод Шотки - биполярный транзистор называется транзистором Шотки.

Ключи на биполярных транзисторах имеют ряд недостатков, ограничивающих их применение:

Ограниченное быстродействие, вызванное конечной скоростью рассасывания неосновных носителей в базе;

Значительная мощность, потребляемая цепями управления в статическом режиме;

При параллельном включении биполярных транзисторов необходимо применение выравнивающих резисторов в цепях эмиттеров, что приводит к снижению КПД схемы;

Термическая неустойчивость, определяемая ростом тока коллектора при увеличении температуры транзистора.

Электронные ключи на полевых транзисторах.

В настоящее время происходит активное вытеснение биполярных транзисторов из области ключевых устройств. В значительной мере альтернативой служат полевые транзисторы. Полевые транзисторы не потребляют статической мощности по цепи управления, в них отсутствуют неосновные носители, а, значит, не требуется время на их рассасывание, наконец, рост температуры приводит к уменьшению тока стока, что обеспечивает повышенную термоустойчивость.

Из всего многообразия полевых транзисторов для построения электронных ключей наибольшее распространение получили МДП - транзисторы с индуцированным каналом (в иностранной литературе - обогащенного типа). Транзисторы этого типа характеризуются пороговым напряжением, при котором возникает проводимость канала. В области малых напряжений между стоком и истоком (открытый транзистор) можно представить эквивалентным сопротивлением (в отличие от насыщенного биполярного транзистора - источника напряжения). Справочные данные на ключевые транзисторы этого типа включают параметрRсиоткр - сопротивление сток-исток в открытом состоянии. Для низковольтных транзисторов величина этого сопротивления составляет десятые - сотые доли Ом, что обуславливает малую мощность, рассеиваемую на транзисторе в статическом режиме. К сожалению, Rсиоткр заметно увеличивается при увеличении максимально допустимого напряжения сток-исток.


Рисунок 7 - Ключ на МДП транзисторе с индуцированным затвором.

Необходимо учитывать, что режим насыщения для МДП-транзистора принципиально отличается от режима насыщения биполярного транзистора. Переходные процессы в ключах на полевых транзисторах обусловлены переносом носителей через канал и перезарядом междуэлектродных емкостей, емкостей нагрузки и монтажа. Так как электроны обладают более высоким быстродействием, чем дырки, то n-канальные транзисторы обладают лучшим быстродействием по сравнению с р-канальными.

В схемотехнике ключевых устройств на полевых транзисторах чаще других используется схема с общим истоком, представленная на рис.7а. Когда транзистор закрыт, через него протекает неуправляемый (начальный) ток стока. При открытом транзисторе ток через транзистор должен определяться величиной сопротивления нагрузки и напряжением питания. Для надежного отпирания транзистора амплитуда управляющего напряжения выбирается из условия: , где - ток нагрузки, - пороговое напряжение, - крутизна ВАХ. В настоящее время выпускается достаточная номенклатура транзисторов, для управления которыми достаточно напряжения ТТЛ-уровня.

Переходные процессы в ключах на МДП транзисторах показаны на рисунке 8.

Рисунок 8. Эпюры напряжения в ключе на полевом транзисторе.

Переходные процессы в ключах на МДП транзисторах происходят так:

Для удобства расчета длительности переходных процессов в ключах на МДП транзисторах целесообразно использовать параметр заряд включения Qзвкл . Например, транзистор с Qзвкл = 20 нКл можно включить за 20 мкс током в 1мА и за 20 нс током в 1А. Указанный параметр приводится в справочниках и определяется изготовителем экспериментальным путем.

При работе со сложными схемами полезным является использование различных технических хитростей, которые позволяют добиться поставленной цели малыми усилиями. Одной из них является создание транзисторных ключей. Чем они являются? Зачем их стоит создавать? Почему их ещё называют «электронные ключи»? Какие особенности данного процесса есть и на что следует обращать внимание?

На чем делаются транзисторные ключи

Они выполняются с использованием полевых или Первые дополнительно делятся на МДП и ключи, которые имеют управляющий р-n-переход. Среди биполярных различают не/насыщенные. Транзисторный ключ 12 Вольт сможет удовлетворить основные запросы со стороны радиолюбителя.

Статический режим работы


В нём проводится анализ закрытого и открытого состояния ключа. В первом на входе находится низкий уровень напряжения, который обозначает сигнал логического нуля. При таком режиме оба перехода находятся в обратном направлении (получается отсечка). А на коллекторный ток может повлиять только тепловой. В открытом состоянии на входе ключа находится высокий уровень напряжения, соответствующий сигналу логической единицы. Возможной является работа в двух режимах одновременно. Такое функционирование может быть в области насыщения или линейной области выходной характеристики. На них мы остановимся детальнее.

Насыщение ключа

В таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить.

Недостатки ненасыщенного ключа

А что будет, если не было достигнуто оптимальное значение? Тогда появятся такие недостатки:

  1. Напряжение открытого ключа упадёт потеряет примерно до 0,5 В.
  2. Ухудшится помехоустойчивость. Это объясняется возросшим входным сопротивлением, что наблюдается в ключах, когда они в открытом состоянии. Поэтому помехи вроде скачков напряжения будут приводить и к изменению параметров транзисторов.
  3. Насыщенный ключ обладает значительной температурной стабильностью.

Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство.

Быстродействие

Взаимодействие с другими ключами

Для этого используются элементы связи. Так, если первый ключ на выходе имеет высокий уровень напряжения, то на входе второго происходит открытие и работает в заданном режиме. И наоборот. Такая цепь связи существенно влияет на переходные процессы, что возникают во время переключения и быстродействия ключей. Вот как работает транзисторный ключ. Наиболее распространёнными являются схемы, в которых взаимодействие совершается только между двумя транзисторами. Но это вовсе не значит, что это нельзя сделать устройством, в котором будет применяться три, четыре или даже большее число элементов. Но на практике такому сложно бывает найти применение, поэтому работа транзисторного ключа такого типа и не используется.

Что выбрать

С чем лучше работать? Давайте представим, что у нас есть простой транзисторный ключ, напряжение питания которого составляет 0,5 В. Тогда с использованием осциллографа можно будет зафиксировать все изменения. Если ток коллектора выставить в размере 0,5мА, то напряжение упадёт на 40 мВ (на базе будет примерно 0,8 В). По меркам задачи можно сказать, что это довольно значительное отклонение, которое накладывает ограничение на использование в целых рядах схем, к примеру, в коммутаторах Поэтому в них применяются специальные где есть управляющий р-n-переход. Их преимущества над биполярными собратьями такие:

  1. Незначительное значение остаточного напряжения на ключе в состоянии проводки.
  2. Высокое сопротивление и, как результат - малый ток, что протекает по закрытому элементу.
  3. Потребляется малая мощность, поэтому не нужен значительный источник управляющего напряжения.
  4. Можно коммутировать электрические сигналы низкого уровня, которые составляют единицы микровольт.

Транзисторный ключ реле - вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки - и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество.

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое - превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

Расчет транзисторного ключа


Для понимания привожу пример расчета, можете подставить свои данные:

1) Коллектор-эмиттер - 45 В. Общая рассеиваемая мощность - 500 mw. Коллектор-эмиттер - 0,2 В. Граничная частота работы - 100 мГц. База-эмиттер - 0,9 В. Коллекторный ток - 100 мА. Статистический коэффициент передачи тока - 200.

2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.

3) Номинал сопротивления коллектора: 3,45\0,06=57,5 Ом.

4) Для удобства берём номинал в 62 Ом: 3,45\62=0,0556 мА.

5) Считаем ток базы: 56\200=0,28 мА (0,00028 А).

6) Сколько будет на резисторе базы: 5 - 0,9 = 4,1В.

7) Определяем сопротивление резистора базы: 4,1\0,00028 = 14,642,9 Ом.

Заключение

И напоследок про название "электронные ключи". Дело в том, что состояние меняется под действием тока. А что он собой представляет? Верно, совокупность электронных зарядов. От этого и происходит второе название. Вот в целом и все. Как видите, принцип работы и схема устройства транзисторных ключей не является чем-то сложным, поэтому разобраться в этом - дело посильное. Следует заметить, что даже автору данной статьи для освежения собственной памяти потребовалось немного попользоваться справочной литературой. Поэтому при возникновении вопросов к терминологии предлагаю вспомнить о наличии технических словарей и проводить поиск новой информации про транзисторные ключи именно там.