Устройство плавного пуска: назначение и принцип действия

Эффективное использование устройств плавного пуска (УПП) возможно только при условии корректного выбора типономинала. Ключевыми критериями выбора обычно являются тип нагрузки двигателя, частота пусков, а также паспортные данные.

Пусковые характеристики устройств могут значительно отличаться друг от друга, причём их величины зависят от спектра решаемых задач. Именно поэтому при выборе устройства плавного пуска асинхронных двигателей так важно учитывать область его будущего применения.

Характеристики пуска условно можно разделить на три категории.

Режимы работы УПП

Нормальный режим ограничивается величиной пусковых токов на уровне 3,5 х I ном, при времени пуска от 10 до 20 секунд.

Тяжёлый режим характеризуется нагрузками с несколько большим моментом инерции. Пусковые токи ограничены пределом 4,5 х I ном, а время разгона - 30-ю секундами.

Очень тяжелый режим подразумевает наличие очень высоких моментов инерции. Пусковые токи доходят до уровня 5,5 х I ном, а время разгона может значительно превышать 30 секунд.

Виды УПП

Схема работы УПП может быть одной из четырёх типов:

1. Регуляторы пускового момента контролируют лишь одну фазу трехфазного асинхронного двигателя. Хотя такой тип управления и способен контролировать плавный пуск, он не обеспечивает снижения пусковых токов.

Фактически, при использовании регуляторов пускового момента, ток на обмотках двигателя приблизительно равен току, который получается при прямом пуске. В тоже время, такой ток протекает по обмоткам дольше, чем в случае прямого пуска, поэтому двигатель может перегреться.

Устройства такого типа не могут применяться для приводов, которым нужно снижение пусковых токов. Они не могут обеспечить пуск высокоинерционных механизмов (из-за опасности перегрева двигателя), а также частые запуски/остановки привода.

2. Регуляторы напряжения без сигнала обратной связи могут работать только по жестко заданной пользователем программе. Обратная связь от двигателя отсутствует, поэтому они не могут изменять частоту вращения двигателя, подстраивая её под меняющуюся нагрузку. В остальном они отвечают всем требованиям, которые предъявляются к мягким пускателям, и способны управлять всеми фазами двигателя. Это едва ли не самые популярные устройства плавного пуска.

Таблица 1 Режим работы в зависимости от области применения

Схема запуска двигателя определяется путём предварительного задания стартового напряжения, а также времени, необходимого для пуска. Многие устройства такого типа могут обеспечивать также ограничение величины пускового тока - это достигается снижением напряжения при запуске. Разумеется, такие регуляторы способны управлять также замедлением работы механизма, выполняя плавный и продолжительный останов.

Двухфазные регуляторы могут снижать напряжение и в трёх фазах, однако ток получается несбалансированным.

3. Регуляторы напряжения с сигналом обратной связи - это модернизированные версии устройств, описанных выше. Они способны считывать текущую величину тока и регулировать напряжение таким образом, чтобы ток не выходил за заданные пользователем рамки. Также полученные данные используются для работы разнообразных защит (от дисбаланса фаз, перегрузки и т.п.).

Такое устройство плавного пуска асинхронных двигателей может быть сгруппировано с другими подобными устройствами в единую систему управления электродвигателями.

4. Регуляторы тока с сигналом обратной связи . Это самые современные устройства плавного пуска. Схема работы основана на регуляции силы тока, а не напряжения, как предыдущие модели. Это обеспечивает лучшую точность управления, более простое программирование и быструю настройку устройства - ведь большинство параметров тут определяется автоматически, без необходимости ручного ввода.

Запуск на пониженное напряжение

В момент такого пуска ток, протекающий через двигатель, равен току в случае заклиненного ротора. Двигатель в это время разгоняется, причём момент в какое-то мгновение становится выше номинала, после чего приходит к номинальному значению. Характер изменения тока и момента зависит от конструкции и модели каждого конкретного двигателя.

Следует заметить, что процесс запуска двигателей разных моделей, но имеющих одинаковые характеристики, может сильно отличаться. Пусковой ток может находиться в пределах 500%-700% от номинального, а момент - от 70% до 230%!

Такие особенности являются серьёзным препятствием для работы этого вида устройств плавного пуска асинхронных двигателей . Поэтому если ваша задача - получить высокий пусковой момент при минимальном значении пускового тока, вам нужно подбирать соответствующие двигатели.

Пусковой момент двигателя имеет квадратичную зависимость от силы тока, как уже было показано.

Необходимо помнить, что снижение тока должно быть ограниченным: если пусковой момент станет меньше момента нагрузки, разгон прекратится, и двигатель не наберет номинальную скорость вращения.

Пускатели по схемам треугольник/звезда

Хотя пускатели такого типа являются самым распространённым видом устройств плавного пуска, схема треугольник/звезда не позволяет работать при больших нагрузках.

Сначала, при пуске, двигатель подключается «в звезду», а момент и величина тока при этом равна трети от номинальной. По истечению заданного интервала привод отключается и снова включается, но уже по схеме «треугольник».

Пуск будет эффективным, если при разгоне по схеме «звезда» двигатель сможет развить момент, который необходим для набора скорости, достаточной для переключения на «треугольник». Если это произойдёт на скорости, значительно меньшей номинальной, то ток при таком пуске не будет значительно отличаться от тока прямого пуска, а значит, применение устройства лишено смысла.

Кроме взрывных скачков тока и момента, в момент перехода двигателя на работу по схеме «треугольник» происходят и другие сложные переходные процессы. Их амплитуда зависит от амплитуды и фазы напряжения, которое создаётся двигателем при переключении.

В самом худшем случае величина напряжения может быть такой же, как в сети, однако находиться в противофазе. Тогда ток будет превышать номинальный в два раза, а момент, согласно вышеприведенной формуле, в четыре.

Пускатели с автотрансформатором

В конструкции таких пускателей для снижения подводимого к двигателю напряжения используется автотрансформатор. Для ступенчатой регуляции величины пускового тока и момента используются специальные отводы. Полная скорость вращения вала электродвигателя достигается до момента перехода на номинальное напряжение, а скачки тока при этом минимизируются. В тоже время из-за ступенчатого характера регулирования достичь высоких показателей точности оказывается невозможно.

Пускатель с автотрансформатором, в отличие от предыдущего (треугольник/звезда) характеризуется замкнутыми переходными процессами. Это означает, что жесткие переходные процессы кривых момента и тока во время разгона электродвигателя отсутствуют.

Из-за падения величины напряжения на автотрансформаторе, уменьшается момент на любых скоростях электродвигателя. При высокоинерционной нагрузке привода время пуска может превысить допустимые (безопасные) пределы, а при переменной - поведение системы становится неоптимальным.

Пускатели с автотрансформатором обычно используются при частоте пусков до 3 шт./час. , рассчитанные на более частые запуски или на более сильную нагрузку, имеют большие габариты и стоят значительно дороже.

Пускатели со встроенными в цепь статора резисторами

Такие пускатели для снижения подводимого к статору напряжения используют жидкостные или металлические резисторы. При грамотном выборе резисторов такие устройства обеспечивают хорошее снижение момента и пускового тока электродвигателя.

Точный выбор резисторов должен быть сделан ещё на этапе проектирования с учётом всех параметров двигателя, его режимов работы и планируемой нагрузки. Однако такая информация не всегда оказывается доступной, а когда резисторы выбирают неточно, то и качество, и надёжность работы пускателя остаются невысокими.

Особенность такой схемы заключается в том, что сопротивление резисторов меняется в процессе работы из-за их нагрева. По причине опасности перегрева, пускатели с резисторами не используются для работы с высокоинерционными машинами и механизмами.

Устройства плавного пуска асинхронных двигателей

УПП (тиристорные УПП) - это наиболее технически совершенные электронные устройства, используемые для плавного пуска/останова электродвигателей. Принцип работы заключается в управлении входящим напряжением. Основная задача - управление пусковым током и моментом, однако современные схемы устройств плавного пуска имеют множество интерфейсных функций, а также позволяют обеспечить комплексную защиту двигателя.

Основные функции УПП:

Возможность плавно и бесступенчато изменять напряжение и ток;

Возможность управления током и моментом путём создания несложных программ;

Плавный останов с мягким торможением в тех системах, где это может потребоваться (конвейеры, насосы и т.п.);

Обеспечение частых пусков и остановов без изменения характеристик системы;

Оптимизация рабочих процессов даже в системах с изменяющейся нагрузкой.

Применение УПП позволяет:

устранить ударные токи в питающей сети и АД при его пуске;

снизить пусковые токи в АД;

устранить механические ударные воздействия как на АД, так и на приводной механизм;

уменьшить тепловые воздействия на АД;

снять перенапряжения при останове АД;

сократить время поиска неисправности;

повысить надежность эксплуатации и срок службы АД.

Устройство плавного пуска представляет из себя тиристорный регулятор напряжения (ТРН)

В регуляторе напряжения в каждый фазный провод включаются встречно-параллельно два тиристора, один из которых работает условно в положительный полупериод напряжения сети, а другой в отрицательный. Регулирование напряжения на выходе регулятора осуществляется изменением времени включения каждого тиристора относительно момента, когда ток должен переходить с одного из трех тиристоров на другой (базовая точка), путем подачи на тиристор управляющего импульса, что дает возможность изменять время протекания тока через тиристор в течение полупериода напряжения сети и напряжение на его выходе, подаваемое на нагрузку, в данном случае на двигатель. Это напряжение не является синусоидальным, и его можно представить как среднее напряжение, которое можно менять, изменяя продолжительность работы тиристора в течение полупериода. Время включения тиристора относительно базовой точки выражается в градусах и называется углом регулирования. Изменяя угол регулирования тиристоров, можно получить необходимое напряжение для плавного пуски двигателя.

По окончании процесса пуска тиристоры переводятся в режим постоянного включения или могут шунтироваться специальным контактором. Применение шунтирующего контактора позволяет повысить КПД устройства, увеличить срок службы тиристоров и исключить влияние полупроводниковых элементов на сеть.

ФУНКЦИИ ЗАЩИТЫ

Дополнительно к функциям управления пусковыми режимами и режимами останова, тиристорные преобразовательные устройства (ТПУ) снабжаются функциями защиты АД и защиты ТПУ от аварийных режимов. К стандартным функциям относятся:

защита от короткого замыкания на выходе ТПУ;

защита от заклинивания вала двигателя при пуске;

защита от перегрузки по току в рабочем режиме;

защита от недопустимого снижения напряжения на входе ТПУ;

защита от недопустимого повышения напряжения на входе ТПУ;

защита от обрыва фаз;

защита от невключения шунтирующего контактора (при наличии);

защита от несимметрии входного напряжения;

защита от обратного чередования фаз на входе;

тепловая защита двигателя;

защита от пробоя силового тиристора;

защита при потере управляемости тиристора.

Тепловая защита двигателя предполагает наличие встроенного в обмотку двигателя датчика температуры, а в системе управления предусматривается только наличие соответствующего входа и системы обработки. При отсутствии такого датчика осуществляется так называемая косвенная тепловая защита, которая основывается на той или иной тепловой модели двигателя, закладываемой изготовителем в программное обеспечение микроконтроллера.

Кроме рассмотренных функций, некоторые изготовители закладывают в ТПУ датчики сопротивления изоляции и возможность сушки обмотки постоянным или переменным током.

Система управления

Интерфейсная часть системы управления содержит, как правило, две части: интерфейс оператора и интерфейс оборудования.

Интерфейс оператора выполняется обычно на основе жидкокристаллического индикатора (ЖКИ) и клавиатуры, расположенных на лицевой панели устройства. С помощью ЖКИ и клавиатуры производится программирование устройства и на ЖКИ выводится информация о режимах работы устройства. Ряд изготовителей недорогих устройств малой мощности реализует интерфейс оператора на основе светодиодной индикации и микропереключателей (устанавливаемых перемычек).

Интерфейс оборудования предполагает развитую систему ввода управляющих сигналов и вывода сигналов о состоянии устройства. Так, команды «пуск/стоп» могут приниматься в виде уровней напряжения, унифицированных токовых сигналов или сигналов типа «сухой контакт». Последние модели устройств содержат в своем составе последовательные каналы связи на основе шин RS-232, RS-432, CAN, через которые может производиться как программирование устройства, так и задание команд пуска/останова и считывание информации о режиме работы. Общее количество входных, выходных сигналов может достигать 15–20 каналов.

Производители

В настоящее время ТПУ выпускают такие мировые производители, как ABB, Siemens, Emotron AB, Softronic, Telemecanique, Ansaldo и ряд других. Выпуск ТПУ освоили и российские фирмы. Большинство фирм выпускает ТПУ в виде моноблока, в котором размещаются силовая часть, система управления и вспомогательные элементы. Следует отметить, что большинство зарубежных устройств не имеют в своем составе шунтирующего контактора, а в системе управления предусматриваются только элементы управления внешним контактором.

В качестве примера отечественного ТПУ можно привести ТПУ4К на мощности 55–160 кВт. Оно построено по классической схеме, имеет встроенный шунтирующий контактор и использует в качестве ядра системы управления микроконтроллер производства Atmel. Интерфейс оператора комбинированный, включающий в себя ЖКИ, подключаемую на время ввода параметров клавиатуру и ряд потенциометров, задающих величины токовых уставок для различных режимов работы. ТПУ имеет следующие функции защиты: от установившегося короткого замыкания на выходе ТПУ; от заклинивания вала двигателя при пуске; от перегрузки по току в рабочем режиме; от обрыва фаз; от невключения шунтирующего контактора; тепловая защита двигателя.

При срабатывании любой защиты ТПУ отрабатывает процедуру останова двигателя в соответствии с алгоритмом, оптимизированным для конкретного вида привода. ТПУ выполнен инвариантным по отношению к чередованию фаз на входе, поэтому не нуждается в защите от неправильной фазировки питающей сети. Из сервисных функций следует отметить наличие выхода, сигнализирующего о безаварийном окончании процесса пуска.

Большое разнообразие пусковых устройств различных производителей, имеющих примерно одинаковые технические характеристики, заставляет обращать внимание на стоимостные, эксплуатационные и «пользовательские» характеристики.

Примечателен тот факт, что изделия отечественных производителей существенно дешевле, чем зарубежные. Кроме того, некоторые отечественные производители, в отличие от иностранных, в цену устройства закладывают затраты на ввод в эксплуатацию, адаптацию изделия к конкретному приводу и оптимизацию его характеристик применительно к конкретному механизму. Наличие микроконтроллера позволяет отдельным отечественным производителям оперативно адаптировать алгоритмы и параметры под требования конкретного заказчика и конкретного вида привода, в то время как представители западных компаний таких услуг не предоставляют.

Примеры УПП:

1) Устройство плавного пуска SIRIUS 3RW40 со встроенными функциями:

Полупроводниковая защита двигателя и собственная защита устройства от перегрузок

Регулируемое токоограничение для плавного пуска и остановки трёхфазных асинхронных двигателей

Диапазон номинальной мощности от 75 до 250 кВт (при 400 В)

Области применения:

Вентиляторы, насосы, строительное оборудование, прессы, эскалаторы, системы кондиционирования воздуха, системы транспортировки, сборочные линии, компрессоры и

охладители, исполнительные механизмы.

2) Устройство плавного пуска PSS – универсальная серия. Фирма АВВ



3) Устройства плавного пуска и торможения Altistart 48. Фирма Schneider Electric


Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов - это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание - стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Распечатать

Электропривод

Устройства плавного пуска: правильный выбор

Ранее мы обсуждали характеристики преобразователей частоты , а сегодня настал черед устройств плавного пуска (мягких пускателей, плавных пускателей – единый термин пока не устоялся, и в этой статье мы будем использовать термин "устройство плавного пуска" – УПП).

Иногда из уст продавцов приходится слышать мнение о том, что УПП выбрать просто, это, мол, не преобразователь частоты, здесь надо только пуск организовать. Это не так. Устройство плавного пуска выбирать сложнее. Попробуем разобраться, в чем эта сложность состоит.

Назначение УПП

Как следует из названия, задача прибора – организовать плавный пуск асинхронного двигателя переменного тока. Дело в том, что при прямом пуске (то есть при подключении двигателя к питающей сети при помощи обычного пускателя) двигатель потребляет пусковой ток, превышающий номинальный в 5-7 раз, и развивает пусковой момент, существенно превышающий номинальный. Все это приводит к двум группам проблем:

1) Пуск слишком быстрый, и это приводит к различным неприятностям – гидравлическим ударам, рывкам в механизме, ударному выбору люфтов, обрыву транспортерных лент и т.д.

2) Пуск тяжелый, и завершить его не удается. Здесь сначала нужно определиться с термином "тяжелый пуск" и возможностями его "облегчения" при помощи УПП. К "тяжелому пуску" обычно относят три разновидности пуска:

а) пуск, "тяжелый" для питающей сети – от сети требуется ток, который она может обеспечить с трудом или не может вообще. Характерные признаки: при пуске отключаются автоматы на входе системы, в процессе пуска гаснут лампочки и отключаются некоторые реле и контакторы, останавливается питающий генератор. Скорее всего, УПП тут действительно поправит дело. Однако следует помнить, что в лучшем случае пусковой ток удастся снизить до 250% от номинального тока двигателя, и если этого недостаточно, то решение одно – необходимо использовать преобразователь частоты .
б) Двигатель не может запустить механизм при прямом пуске – не крутится вообще или "зависает" на определенной скорости и остается на ней до срабатывания защиты. Увы, УПП ему не поможет – двигателю не хватает момента на валу. Возможно, с задачей справится преобразователь частоты, но этот случай требует исследования.
в) Двигатель уверенно разгоняет механизм, но не успевает дойти до номинальной частоты – срабатывает автомат на входе. Такое часто бывает на тяжелых вентиляторах с достаточно высокой частотой вращения. Устройство плавного пуска здесь, скорее всего, поможет, но риск неудачи сохраняется. Чем ближе механизм к номинальной скорости в момент срабатывания защиты, тем больше вероятность успеха.

Организация пуска при помощи УПП

Принцип работы устройства плавного пуска заключается в том, что напряжение, подаваемое от сети через УПП на нагрузку, ограничивается при помощи специальных силовых ключей – симисторов (или встречно – параллельно включенных тиристоров) – см. рис. 1. В результате напряжение на нагрузке можно регулировать.

Немного теории: процесс пуска – это процесс преобразования электрической энергии источника питания в кинетическую энергию работающего на номинальной скорости механизма. Очень упрощенно этот процесс можно описать так: сопротивление двигателя R в процессе разгона увеличивается от очень маленького при остановленном двигателе до достаточно большого на номинальной скорости, поэтому ток, который по закону Ома равен:

I = U / R (1)

оказывается очень большим, а передача энергии

Е = P х t = I х U х t (2)

очень быстрой. Если между сетью и двигателем установить УПП, то формула (1) действует на его выходе, а формула (2) – на входе. Понятно, что ток в обеих формулах одинаковый. УПП ограничивает напряжение на двигателе, плавно повышая его по мере разгона вслед за ростом сопротивления, ограничивая, таким образом, потребляемый ток. Поэтому по формуле (2) при постоянстве необходимой энергии Е и напряжении сети U чем меньше ток I, тем больше время пуска t. Отсюда видно, что при снижении напряжения будут решаться как проблемы, связанные со слишком быстрым пуском, так и проблемы, связанные со слишком большим током, потребляемым от сети.

Однако в наших выкладках не учитывалась нагрузка, для разгона которой нужен дополнительный момент, и соответственно дополнительный ток, поэтому уменьшать ток слишком сильно нельзя. Если нагрузка велика, то момента на валу двигателя может не хватить даже при прямом пуске, не говоря уже о пуске при пониженном напряжении – это вариант тяжелого пуска "б", описанный выше. Если же при снижении тока момент оказывается достаточным для разгона, но время в формуле (2) растет, то может сработать автомат – с его точки зрения время протекания тока, существенно превышающего номинальный, недопустимо велико (вариант тяжелого пуска "в").

Основные характеристики УПП. Возможность контроля тока . По существу это способность УПП регулировать напряжение так, чтобы ток изменялся по заданной характеристике. Эта функция обычно называется пуском в функции тока. Простейшие УПП, не имеющие такой возможности, просто регулируют напряжение в функции времени – т.е. напряжение на двигателе плавно возрастает от начального до номинального за заданное время. Во многих случаях этого достаточно, особенно при решении проблем группы 1. Но если основная причина установки УПП – ограничение тока, то без его точного регулирования не обойтись. Эта функция особенно важна тогда, когда из-за ограниченной мощности сети (маленький трансформатор, слабый генератор, тонкий кабель и т.п.) превышение предельно допустимого тока чревато аварией. Кроме того, УПП с контролем тока способны реализовать его плавное нарастание в начале процесса пуска, что особенно важно при работе от генераторов, которые очень чувствительны к резким броскам нагрузки.

Необходимость шунтирования.

По окончании процесса пуска и достижении номинального напряжения на двигателе УПП желательно вывести из силовой цепи. Для этого применяется шунтирующий контактор, соединяющий вход и выход УПП пофазно (см. рис. 2).

По команде от УПП этот контактор замыкается, и ток течет в обход прибора, что позволяет его силовым элементам полностью остыть. Однако, даже при отсутствии шунтирующей цепи, когда во все время работы двигателя через симисторы течет номинальный силовой ток, их нагрев по сравнению с режимом пуска оказывается небольшим, поэтому многие УПП допускают работу без шунтирования. Платой за такую возможность оказывается немного меньший номинальный ток и существенное увеличение веса и габаритов за счет радиатора, необходимого для отвода тепла от силовых ключей. Некоторые УПП строятся по обратному принципу – в них шунтирующий контактор уже встроен, и на работу без шунтирования они не рассчитаны, поэтому из-за уменьшения охлаждающих радиаторов их размеры оказываются минимальными. Это положительно сказывается и на цене, и на получающейся схеме подключения, но их время работы в пусковом режиме оказывается меньше по сравнению с другими приборами.

Количество регулируемых фаз.

По этому параметру УПП делятся на двухфазные и трехфазные. В двухфазных, как это следует из названия, ключи установлены только в двух фазах, третья же подключается к двигателю напрямую. Плюсы – снижение нагрева, уменьшение габаритов и цены.

Минусы – нелинейное и несимметричное по фазам потребление тока, которое хотя и частично компенсируется специальными алгоритмами управления, все же отрицательно влияет на сеть и двигатель. Впрочем, при нечастых пусках этими недостатками можно пренебречь.

Цифровое управление. Система управления УПП может быть цифровой и аналоговой. Цифровые УПП обычно реализуются на микропроцессоре и позволяют очень гибко управлять процессом работы прибора и реализовывать множество дополнительных функций и защит, а также обеспечивать удобную индикацию и связь с управляющими системами верхнего уровня. В управлении аналоговых УПП используются операционные элементы, поэтому их функциональная насыщенность ограничена, настройка выполняется потенциометрами и переключателями, а связь с внешними системами управления обычно осуществляется при помощи дополнительных устройств.

Дополнительные функции

Защита. Кроме своей основной функции – организации плавного пуска – УПП содержат в себе комплекс защит механизма и двигателя. Как правило, в этот комплекс входит электронная защита от перегрузки и неисправностей силовой цепи. В дополнительный набор могут входить защиты от превышения времени пуска, от перекоса фаз, изменения чередования фаз, слишком маленького тока (защита от кавитации в насосах), от перегрева радиаторов УПП, от снижения частоты сети и т.д. Ко многим моделям возможно подключение термистора или термореле, встроенного в двигатель. Однако следует помнить, что УПП не может защитить ни себя, ни сеть от короткого замыкания в цепи нагрузки. Конечно, сеть будет защищена вводным автоматом, но УПП при коротком замыкании неизбежно выйдет из строя. Некоторым утешением может служить только то, что короткое замыкание при правильном монтаже не возникает мгновенно, и в процессе снижения сопротивления нагрузки УПП обязательно отключится, только не стоит вновь включать его, не установив причину отключения.

Пониженная скорость. Некоторые устройства плавного пуска способны реализовать так называемое псевдочастотное регулирование –перевод двигателя на пониженную скорость. Этих пониженных скоростей может быть несколько, но они всегда строго определены и не поддаются коррекции пользователем.

Кроме того, работа на этих скоростях сильно ограничена по времени. Как правило, эти режимы используются в процессе отладки или при необходимости точной установки механизма в нужное положение перед началом работы или по ее окончании.

Торможение . Довольно много моделей способны подать на обмотку двигателя постоянный ток, что приводит к интенсивному торможению привода. Эта функция обычно нужна в системах с активной нагрузкой – подъемники, наклонные транспортеры, т.е. системы, которые могуг двигаться сами собой при отсутствии тормоза. Иногда эта функция нужна для предпусковой остановки вентилятора, вращающегося в обратную сторону из-за тяги или действия другого вентилятора.

Толчковый пуск. Используется в механизмах, имеющих высокий момент трогания. Заключается функция в том, что в самом начале пуска на двигатель кратковременно (доли секунды) подается полное напряжение сети, и происходит срыв механизма с места, после чего дальнейший разгон происходит в обычном режиме.

Экономия энергии в насосно-вентиляторной нагрузке. Поскольку УПП представляет собой регулятор напряжения, то при малой нагрузке можно снизить напряжение питания без ущерба для работы механизма.

Экономию энергии это дает, но не следует забывать, что тиристоры в режиме ограничения напряжения являются нелинейной нагрузкой для сети со всеми вытекающими отсюда последствиями.

Есть и другие возможности, которые производители закладывают в свои изделия, но для их перечисления объема одной статьи недостаточно.

Методика выбора

Теперь вернемся к тому, с чего мы начинали – к выбору конкретного прибора.

Многие советы, данные для выбора преобразователя частоты, действуют и здесь: сначала следует отобрать серии, отвечающие техническим требованиям по функциональности, затем выбрать из них те, которые охватывают диапазон мощностей для конкретного проекта, и из оставшихся выбрать нужную серию в соответствии с другими критериями – производитель, поставщик, сервис, цена, габариты, и т.д.

Если нужно выбрать УПП для насоса или вентилятора, запуск которых происходит не чаще двух-трех раз в час, то можно просто выбрать модель, номинальный ток которой равен или больше номинального тока запускаемого двигателя. Этот случай охватывает около 80% применений, и не требует консультаций со специалистом. Если же частота пусков в час превышает 10, то нужно учесть и необходимое ограничение тока, и требуемое затягивание пуска по времени. В этом случае очень желательна помощь поставщика, у которого, как правило, имеется программа выбора нужной модели или хотя бы расчетный алгоритм. Данные, которые понадобятся для расчета: номинальный ток двигателя, количество пусков в час, необходимая длительность пуска, необходимое ограничение тока, необходимая длительность останова, окружающая температура, предполагаемое шунтирование.

Если же двигатель запускается свыше 30 раз в час, то стоит рассмотреть в качестве альтернативы вариант использования преобразователя частоты, поскольку даже выбор более мощной модели УПП может не решить проблему. А цена его уже будет сравнима с ценой преобразователя при существенно меньшей функциональности и серьезному влиянию на качество сети.

Подключение

Кроме очевидного подключения прибора к сети и двигателю, необходимо определиться с шунтированием.

Несмотря на то, что шунтирующий контактор будет коммутировать номинальный, а не пусковой ток двигателя, желательно все-таки использовать модель, рассчитанную на прямой пуск – хотя бы для реализации аварийных режимов работы. При подключении следует обратить особое внимание на фазировку – если ошибочно соединить, например, фазу А на входе УПП с другой фазой на выходе, то при первом же включении шунтирующего контактора произойдет короткое замыкание, и прибор будет выведен из строя.

Некоторые УПП допускают так называемое шестипроводное подключение, схема которого показана на рис. 3. Такое подключение требует большего количества кабелей, но позволяет использовать устройство плавного пуска с двигателем, мощность которого намного превышает мощность самого УПП.

При установке УПП следует иметь в виду еще одно его свойство, часто приводящее к недоразумениям (см. тяжелый пуск "в"). При расчете вводного автомата для двигателя, подключающегося к сети напрямую, учитывается номинальный ток двигателя, протекающи й длительное время, и пусковой, протекающий лишь несколько секунд. При использовании же УПП пусковой ток существенно меньше, но протекает он намного дольше – до минуты и более. Автомат не может этого “понять” и считает, что запуск давно завершен, а протекающий ток, превышающий номинальный в разы, является следствием аварийной ситуации, и отключает систему. Во избежание этого следует либо установить специальный автомат с возможностью установки дополнительного режима для процесса плавного пуска, либо выбрать автомат с номинальным током, соответствующим пусковому току при использовании УПП. Во втором случае этот автомат не сможет защитить двигатель от перегрузок, но эту функцию выполняет сам УПП, так что защита двигателя не пострадает.

Подведем итоги. Если механизм, пуск которого нужно сделать более плавным, вписывается во все перечисленные в этой статье ограничения, а возможности, обеспечиваемые доступными моделями УПП, вас устраивают, то ваш выбор – устройство плавного пуска. Экономия средств по сравнению с применением преобразователя частоты (заменой питающего трансформатора, увеличением мощности генератора, заменой кабеля на более толстый – выберите ваш случай) будет ощутимой. Если же УПП по каким-то причинам не подходит – еще раз обратите внимание на преобразователи частоты , которые хотя и дороже, но намного функциональнее.

Руслан Хусаинов, к.т.н., технический директор ЗАО "Сантерно" (Москва)

Реклама

Электропривод 25.07.2017 Yaskawa Electric Corporation сообщила о создании первого в мире серводвигателя со встроенным усилителем на нитрид-галлиевых полупроводниках. Серводвигатель Σ-7 F вдвое меньше по размеру традиционных приводов, что предоставляет возможность создавать более компактные и эффективные решения.

При прямом пуске электроприводов большой мощности возникают значительные просадки напряжений, что может приводить даже к аварийным отключениям подстанций. В машинах средней и малой мощности прямой пуск может приводить к повреждениям различных механических устройств системы в результате резкого скачка момента двигателя. Более того, прямой пуск не очень благоприятен и для самого двигателя, что снижает срок его службы.

Для снижения влияния пускового тока на сеть и механические части систем применяют устройства для ограничения величины пускового тока. Такими средствами для асинхронных машин с КЗ ротором могут быть или же более современное устройство плавного пуска или как его еще называют – тиристорный регулятор напряжения.

Устройство плавного пуска довольно простое – схема ниже:

Это всего лишь , включенные встречно-параллельно в каждую фазу асинхронной машины. Принцип работы устройства плавного пуска очень прост – напряжение на обмотке двигателя регулируется углом открывания тиристоров.


Таким образом, можно получить плавное наращивания пускового тока и, соответственно, момента.


После разгона электродвигателя до нужной скорости угол открывания тиристора переводят максимальный и машина работает в нормальном режиме. Но, при таком режиме работы происходит нагрев силовых ключей, что требует установки более мощных и реализации принудительной системы охлаждения. Это делает устройство плавного пуска УПП более габаритным и дорогостоящим. Для решения этой проблемы придумали следующее решение – после пуска шунтируют силовые ключи контактором. Это позволяет выводить силовые вентили с работы в установившихся режимах работы системы электропривода, что устраняет проблемы с вентиляцией.


Где: КМ – контактор, шунтирующий тиристоры.

Для еще большей простоты схемы управление напряжением осуществляют по двум фазам:

Данная система обладает следующими достоинствами:

  • Снижают токовые броски в статоре машины в момент пуска;
  • Ведут полный контроль перегрузок электромашины;
  • Устранение рывков в электроприводе, что обеспечивает более длительный срок эксплуатации оборудования;
  • В трубопроводах и при запусках насосов устраняют гидравлические удары;
  • При возникновении аварийных ситуаций такое устройство вполне может обеспечить предельное быстродействие;

Недостатки:

  • В отличии от устройство плавного пуска не может регулировать скорость асинхронной машины в установившихся режимах (применим только для пуска и торможения);
  • Не осуществляет реверс электродвигателя. Для осуществления реверса необходимо дополнительно устанавливать реверсоры;
  • Генерация высших гармоник, что неблагоприятно сказывается как на электродвигателе, так и на сети;
  • Относительно небольшой пусковой момент;

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения , автотрансформатора и т. д.

В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Как плавно запустить двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.


  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.


  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.


  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.


Регулятор оборотов коллекторного двигателя

Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.


Заключение

УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.

Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.